
Team Round Solutions

1. I define a “good day” as a day when both the day and the month evenly divide the concatenation
of the two. For example, today (March 15) is a good day since 3 and 15 both divide 315. However,
March 9 is not a good day since 9 does not divide 39. How many good days are in March, April,
and May combined?

Proposed by Lohith Tummala

Answer. 13

Solution. Let d be the day and m be the month. To test if a day is a good day, check if d is a
multiple of m, and that d is a factor of 100m (or 10m in the case of a single digit day). If m = d,
then we have a good day. We can also get a good day by multiplying d by factors of 100 as well.
Counting, we get 13 :

3/3, 3/6, 3/12, 3/15, 3/30, 4/4, 4/8, 4/16, 4/20, 5/5, 5/10, 5/20, 5/25

2. We are searching for the number 7 in the following binary tree:

4

2 6

1 3 5 7

root

We use the following algorithm (which terminates with probability 1):

1. Write down the number currently at the root node

2. If we wrote down 7, terminate

3. Else, pick a random edge, and swap the two numbers at the endpoints of that edge

4. Go back to step 1

Let p(a) be the probability that we ever write down the number a after running the algorithm
once. Find

p(1) + p(2) + p(3) + p(5) + p(6).

Proposed by Justin Hsieh

Answer. 11
4

Solution. First, we have p(1) = p(3) = p(5) = 1
2 . By symmetry, there is a 1

2 chance that 1 gets
to the root before 7 does. The same holds for 3 and 5.



Next, we compute p(2). Consider the first time either 2 or 7 is moved. There is a 1
4 chance that

this move brings 2 to the root, and a 3
4 chance that this move brings 2 and 7 to the same level,

at which point we can apply symmetry. This gives us p(2) = 1
4 + 3

4 · 1
2 = 5

8 .

Finally, we compute p(6). For this case, we can consider the first time 6 or 7 is moved. There is
a 1

3 chance that 6 is moved to the root, a 1
3 chance that 6 is moved to the same level as 7, and a

1
3 chance that 6 and 7 are swapped. We get

p(6) =
1

3
+

1

3
· 1
2
+

1

3
(1− p(6)),

and we can solve this equation to get p(6) = 5
8 .

In total,

p(1) + p(2) + p(3) + p(5) + p(6) =
1

2
+

5

8
+

1

2
+

1

2
+

5

8
=

11

4
.

3. Let f(x) = x4 − 4x2 + 2. Find the smallest natural n ∈ N such that there exists k, c ∈ N with∣∣∣∣fk

(
n2 + 1

n

)
− c144

∣∣∣∣ < 1

100
.

Proposed by James Yang

Answer. 512

Solution. Note that in general, f(n+ 1/n) = n4 + 1/n4, so in general, we have the formula

fk(n+ 1/n) = n4k + 1/n4k

so we want n4k = c144. Since 144 = 42 · 9, then we just need n to be a 9-th power. It’s clear then
that the answer is 29 = 512 .

4. A non-self intersecting hexagon RANDOM is formed by assigning the labels R,A,N,D,O,M in
some order to the points

(0, 0), (10, 0), (10, 10), (0, 10), (3, 4), (6, 2).

Let amax be the greatest possible area ofRANDOM and amin the least possible area ofRANDOM .
Find amax − amin.

Proposed by Justin Hsieh

Answer. 44

Solution. We split up the square (0, 0), (10, 0), (10, 10), (0, 10) into triangles, with (3, 4), (6, 2)
as additional vertices:



Each triangle is labelled with its area. There are two more possible configurations that can be
obtained by flipping an edge:

(The unlabelled triangle in the right diagram has area 1.) There are more ways to split the square
into triangles, but these involve creating an edge between opposite corners of the square (between
(0, 0) and (10, 10), or between (10, 0) and (0, 10)). Such an edge cannot be part of a non-self
intersecting hexagon because it separates the other pair of opposite corners.

Every possible non-intersecting hexagon can be formed by removing two triangles from one of
the squares above. To find the maximum area, we want to remove two triangles of small area.
The two smallest triangles are in the third configuration, with areas 1 and 9. This is not a valid
hexagon, but the next smallest areas 1 and 10 give the hexagon

(0, 0), (6, 2), (3, 4), (10, 0), (10, 10), (0, 10).

To find the minimum area, we want to remove two triangles of large area. The largest triangles
that give a valid hexagon are the triangles of area 40 and 15 in the second configuration. This
gives the hexagon

(0, 0), (10, 0), (10, 10), (6, 2), (0, 10), (3, 4).

The maximum possible area is amax = 89, the minimum possible area is amin = 44, and the
answer is 89− 45 = 44 .



5. Suppose we have a uniformly random function from {1, 2, 3, . . . , 25} to itself. Find the expected
value of

25∑
x=1

(f(f(x))− x)2.

Proposed by Ishin Shah

Answer. 2496

Solution. We will define Xk to be the random variable of X = (f(f(k))− k)2. By linearity of
expectation, we need to find

∑n
k=1E[Xk]. Thus, we will find each individual Xk.

For each k, we will case upon if f(k) = k.

E[Xk] = E[Xk|f(k) = k]P [f(k) = k] + E[Xk|f(k) ̸= k]P [f(k) ̸= k]

If f(k) = k, then Xk = 0. Otherwise, we also have P [f(k) ̸= k] =
n− 1

n
.

Now, if f(k) ̸= k, for the function evaluated at f(k) has a uniformly random choice of functions.
Thus, E[Xk|f(k) ̸= k] = 1

n

∑n
i=1(k − i)2

Thus, E[Xk] =
n− 1

n2

∑n
i=1(k − i)2.

Our final solution is

n− 1

n2

n∑
k=1

n∑
i=1

(k − i)2 =
n− 1

n2

n∑
k=1

n∑
i=1

k2 − 2ki+ i2.

We can split this up into

n− 1

n2

(
n∑

k=1

n∑
i=1

2k2 −
n∑

k=1

n∑
i=1

2ki

)
=

2(n− 1)

n

n∑
k=1

k2 − 2(n− 1)

n2

(
n∑

k=1

k

)2

=

2(n− 1)

n

n(n+ 1)(2n+ 1)

6
− 2(n− 1)

n2
(
n(n+ 1)

2
)2 =



(n− 1)(n+ 1)(2n+ 1)

3
− (n− 1)(n+ 1)2

2

Plugging in n = 25 gets the answer of 2496 .

6. Suppose we have a regular 24-gon labeled A1 · · ·A24. We will draw 2 smaller regular 24-gons
within A1 · · ·A24. For the sake of this problem, make Ai = Ai+24.

With our first configuration, we create 3 stars by creating lines AiAi+9. A 24-gon will be created
in the center, which we denote as our first 24-gon.

With our second configuration, we create a star by creating lines AiAi+11. A 24-gon will be created
in the center, which we denote as our second 24-gon.

Find the ratio of the areas of the first 24-gon to the second 24-gon.

Proposed by Ishin Shah

Answer. 3 +
√
2 +

√
3 +

√
6 or 3 +

√
3 + 2

√
2 +

√
3

Solution. Let O be the center of A1 · · ·A24. Also, let r = OAi for some i. The center of the new
24-gons will be O by symmetry of the regular 24-gons. Now, we will find the ratio of the sizes of
the polygons. We will do this by finding the distance from O to the lines that create the lines.

Now, analyzing the triangles OAiAi+9 gives a 22.5◦ − 22.5◦ − 135◦ triangle. This makes the
distance from O to the sides of our first 24-gon equal to r sin(22.5◦).

Also, triangles OAiAi+11 gives a 7.5◦ − 7.5◦ − 165◦ triangle. This makes the distance from O to
the sides of our first 24-gon equal to r sin(7.5◦).

This makes our side length ratio equal to sin(22.5◦)
sin(7.5◦) .

Now, since sin(3x) = 3 sin(x)−4 sin3(x), we get sin(3x)
sin(x) = 3−4 sin2(x) = 1+2 cos(2x). This makes

our side length ratio equal to 1 + 2 cos(15◦).

Now, since cos(15◦) =

√
6 +

√
2

4
, the ratio is

2 +
√
6 +

√
2

2
.

Finally, since we need to square this, we get (
2 +

√
6 +

√
2

2
)2 = 1

2(
√
3+

√
2+1)2 = 3 +

√
2 +

√
3 +

√
6 .

Alternatively, we could get (1 + 2 cos(15◦))2 = 4 cos2(15◦) + 4 cos(15◦) + 1 =

2 cos(30◦) + 4 cos(15◦) + 3 = 3 +
√
3 + 4 cos(15◦).

This simplifies to 3 +
√
2 +

√
3 +

√
6 . Also, with half angle formula, we get cos(15◦) = 1

2

√
2 +

√
3

giving the other form of 3 +
√
3 +

√
2 +

√
3 .



7. The binomial coefficient
(
n
k

)
can be defined as the coefficient of xk in the expansion of (1 + x)n.

Similarly, define the trinomial coefficient
(
n
k

)
3
as the coefficient of xk in the expansion of (1+x+

x2)n.

Determine the number of integers k with 0 ≤ k ≤ 4048 such that
(
2024
k

)
3
≡ 1 mod 3.

Proposed by Alan Abraham

Answer. 648

Solution. We see that in F3[x], (1+x+x2) = x3−1
x−1 = (x−1)3

x−1 = (x−1)2. So
(
2024
k

)
3
is equivalent

mod 3 to the coefficient of xk in (x − 1)4048. So our problem is equivalent to finding all k such
that

(
4048
k

)
≡ (−1)k mod 3. To this end we use Lucas’s theorem. In base 3, 4048 = 121122213.

Let k have ternary representation a3b3a2a1b2b1b0a0 where for all i, ai ∈ {0, 1} and bi ∈ {0, 1, 2}
(if ai = 2, then Lucas’s theorem would tell us 3|

(
4048
k

)
). Then(

4048

k

)
≡

3∏
i=0

(
1

ai

)(
2

bi

)
mod 3 ≡

3∏
i=0

(−1)bi mod 3

(−1)k = (−1)
∑3

i=0 ai+bi =
3∏

i=0

(−1)ai(−1)bi

So it is a necessary and sufficient condition that
∏3

i=0(−1)ai = 1. So for any of the 2334 choices
of a1, a2, a3, b0, b1, b2, b3, there will be exactly one choice for a0 that makes this equation true.
Hence, our total count is 2334 = 648

8. Let U be the set of all possible complex numbers m so that the 4 roots of (x2 + 2x + 5)(x2 −
2mx+ 25) = 0 are concyclic in the complex plane. One can show that when the points of U are
plotted on the complex plane, it is visualized as the finite union of some curves. Find the sum of
the length of these curves (i.e. the perimeter of U).

Proposed by Alan Abraham

Answer. 10 + 40π
3

Solution. Let the roots of x2 + 2x + 5 be r1 = −1 − 2i and r2 = −1 + 2i. Let the roots
of x2 − 2mx + 25 be s1, s2. For r1, r2, s1, s2 to be concyclic, it is necessarily the case that the
circumcenter lies on the intersection of the perpendicular bisectors of r1, r2 and s1, s2. If this point
is equally distant to all 4 points, then they are concyclic. The perpendicular bisector of r1, r2 is
just the real axis. For the first case: if s1 and s2 are also conjugate pairs, then the perpendicular
bisector of s1, s2 is also the real line. In this case r1, r2, s1, s2 form an isosceles trapezoid which is
always concyclic. This happens when m is real and 4m2 − 100 < 0 i.e. m ∈ (−5, 5).

For the second case: Otherwise, the perpendicular bisectors must have a unique intersection.
Suppose that is a ∈ R. The distance squared from a to r1 or r2 will be (a + 1)2 + 4. The
distance from a to si is (a − si)(a − si) and must also be equal to (a + 1)2 + 4. This means
2a+ 5 = −a(si + si) + sisi Note that by viete’s s1s2 = 25. Let s = s1. This means we have the
system of equations {

2a+ 5 = −a(s+ s) + ss

2a+ 5 = −a
(
25
s + 25

s

)
+ 625

ss



{
2a+ 5 = −a(s+ s) + ss

(2a+ 5)ss = −25a(s+ s) + 625

Let S = s+ s and P = ss. Then we have{
2a+ 5 = −aS + P

625 = 25aS + (2a+ 5)P

This is a linear system of equations. When a = 0 there are no solutions. When a = −15, both
equations are multiples of each other. Otherwise, we get that P = 25 and S = 20−2a

a . Note that
this means s = 25

s = s2. That is s2, s1 are conjugate pairs which is the first case. When a = −15 we
have that as long as 15S+P = −25 there is a solution for s. We also must have P positive, which
means S < −5

3 This means s and s are roots of the quadratic x2−Sx−15S−25. So S is necessarily
real and S2 + 60S + 100 < 0 This means that s can lie anywhere on the circle parametrized by
(t,±

√
−t2 − 30t− 25) where t ranges from all real values satisfying −t2 − 30t− 25 ≥ 0, which is

also the circle (x+ 15)2 + y2 = 200 (if we think of C as R2). By symmetry, s2 will also lie on the
same circle. Since s2 =

25
s1
, we can construct s2 by drawing a line passing through the origin and

s1, and then taking the conjugate of the other intersection point with (x+ 15)2 + y2 = 200.

Switching our perspective to vectors in R2, let u = (ux, uy) be a unit vector pointing in the
direction of s1. Consider the solutions to t in the quadratic (tu − p)T (tu − p) = 200 where
p = (−15, 0). This means t2 − 2tuT p + pT p − 200 = 0 If t1, t2 are the roots, then s1 = t1u and

s2 =

(
1 0
0 −1

)
t2u. So

s1 + s2
2

=
1

2

(
t1 + t2 0

0 t1 − t2

)
u

m =

(
uT p 0

0 ±
√
(uT p)2 − pT p+ 200

)
u

m =

(
uT p 0

0 ±
√
(uT p)2 − 25

)
u

−m

15
= (u2x,±uy

√
u2x −

1

9
)

Note that (
u2x −

5

9

)2

+ u2y

(
u2x −

1

9

)
= u4x −

10

9
u2x +

25

81
+ u2yu

2
x −

1

9
u2y

= u4x −
10

9
u2x +

25

81
+ u2x − u4x −

1

9
+

1

9
u2x

=
16

81

So in this case, m must be on a circle with radius 15 · 4
9 = 20

3 centered around −15 · 5
9 = −25

3
Using a continuity argument (alternatively note that u2x can be any value between 1

9 and 1), we
see that all such values of m are attainable.

Hence, U consists of a line segment from −5 to 5 and a circle of radius 20
3 , so the total length is

10 +
40π

3



9. Given a triangle, AB = 78, BC = 50, AC = 112, construct squares ABXY,BCPQ,ACMN
outside the triangle. Let L1, L2, L3 be the midpoints of MP,QX,NY , respectively. Find the
area of L1L2L3.

Proposed by Henry Zheng

Answer. 8222

Solution. Let’s first try to find the length of circumradius. We can find the area by heron’s
formula as:

[ABC] =
√
s(s− a)(s− b)(s− c)

We get that the semiperimeter is just (78 + 50 + 112)/2 = 120 Therefore, the area comes out to
be:

[ABC] =
√

(120)(8)(70)(42) = 10
√

(12)(8)(7)(42) = 1680

Now, we get that the circumradius satisfies that:

[ABC](4R) = (78)(50)(112)

R =
(78)(50)(112)

4(1680)
= 65

Therefore, the circumradius is 65. Now, we can notice the following. Now, let H be the or-
thocenter of △ABC. Now, let L1, L2, L3 lie on MP,QX,NY respectively. Now, we can notice
that L1, L2, L3 are on the triangles of CMP , AQX, and BNY respectively. Now, I claim that
L1, L2, L3 lie on CH,AH,BH respectively. We’ll prove simply that L2 lies on AH, and we can
apply a similar proof for each of the others. Let AD be an altitude. Consider the rotations of
△ADB,ADC around A so that AB,AC match up to AY,AN respectively. Let the points that
D gets rotated to be called U, V for triangles ADB,ADC respectively. notice that UA, V A are
perpendicular to AD since it’s a 90 degree rotation. Therefore, this tells us that UV contains
A. Furthermore, notice that UY and V N are both perpendicular to UV , so therefore they’re
parallel. Furthermore, we can notice that UA = V A = AD. Therefore, we get that UV NY is a
trapezoid, with A,L2 as midpoints of their respective points. Therefore, it has to be that AL1 is
perpendicular to UV . Thus, we get that AL1 is the extension of the altitude AD. We get that
L2A,L1C,L3B all intersect at the orthocenter H. Furthermore, by the trapezoidal observation,
we get that |AL2| = BC

2 . Therefore, from here on we length bash. We want to find the areas of
the triangles, △HL1L2,△HL2L3,△HL1L2. Let a, b, c be the triangle’s angles at points A,B,C
respectively. We get that:

HL1 = HC + CL1 = 2Rcos(c) +Rsin(c)

HL2 = HA+AL2 = 2Rcos(a) +Rsin(a)

HL3 = 2Rcos(b) +Rsin(b)

From here, we get that:
HL1 = 143, HL2 = 145, HL3 = (−10)

by bashing out the values of sin and kind of directing the values. Then, we get that the angles
between HL2, HL1 is 180− b, which has a sine value of sin(b). Therefore, we get that the area of

△HL1L2 = (143)(145)(56/130) = 8932



△HL2L3 = ((−10))(145)(39/130) = −435

△HL1L3 = (143)((−10))(25/130) = −275

Summing these three areas gives us an area of 8222 as our answer.

10. In a 2024 × 2024 grid of squares, each square is colored either black or white. An ant starts at
some black square in the grid and starts walking parallel to the sides of the grid. During this
walk, it can choose (not required) to turn 90◦ clockwise or counterclockwise if it is currently on
a black square, otherwise it must continue walking in the same direction.

A coloring of the grid is called simple if it is not possible for the ant to arrive back at its starting
location after some time. How many simple colorings of the grid are maximal, in the sense that
adding any black square results in a coloring that is not simple?

Proposed by James Yang

Answer. 20244046

Solution. TLDR: Bijection spam :)

We begin by interpreting each row and column of the grid as vertices in a graph. In particular,
construct vertices r1, r2, . . . , r2024, c1, c2, . . . , c2024, and connect (rx, cy) iff the square (x, y) in the
grid is black. In this way, every possible coloring of the square grid uniquely corresponds to some
bipartite graph on 2 sets of 2024 vertices.

Next, we notice that a coloring of the grid is simple exactly when the corresponding bipartite
graph is acyclic. This is because any path the ant takes corresponds to a path in the bipartite
graph, as each time the ant switches between rows and columns of the grid, it must be on a black
square, hence the corresponding sequence of vertices in the graph is a path. Therefore, it is only
possible for the ant to revisit its starting location if the bipartite graph contains a cycle.

Now, we attempt to interpret when a simple coloring is maximal. We know that simple colorings
correspond to acyclic bipartite graphs. If there were a pair (rx, cy) of vertices in distinct connected
components of the graph, then we could simply add this edge and the graph remains acyclic. Thus,
any pair (rx, cy) is connected by a path. It clearly follows that in fact, any two pair of vertices in
the graph are connected by a path. This means that maximal simple colorings exactly correspond
to bipartite acyclic connected graphs, or in other words, spanning trees of a K2024,2024.

It then suffices to count the number of distinct spanning trees of a labelled K2024,2024. To do this,
we can modify the well-known bijective proof of Cayley’s Formula.

First, note that in any bipartite graph, the sum of the degrees of vertices on both sides are equal.
Since acyclic graphs have an average degree of < 2, then any spanning tree of a Km,n has a leaf on
the side with more vertices (and both sides if m = n). This observation motivates the following
algorithm: Given a spanning tree of a labelled K2024,2024, we alternate between sides of the graph
(starting from a fixed side), and remove the current lowest index leaf on this side each iteration.
We continue this until just 2 vertices remain, and in each iteration, we record in a sequence the
unique vertex of the graph adjacent to the removed leaf. This algorithm results in a sequence of
4046 vertices, alternating between sides of the graph.

We show that this algorithm produces a bijection from spanning trees of the labelled K2024,2024

to sequences of 4046 vertices that alternate sides. To do this, we construct the inverse algorithm



to recover the original spanning tree: Given such a sequence of 4046 vertices, collect the set of
vertices that do not appear in the sequence, and mark them as ”available”. For each vertex in
the sequence in order, attach it to the lowest index ’available’ vertex on the other side. The
previously available vertex that was attached to is now no longer available, whereas the vertex
from the sequence, if it is new, is now available. After finishing this process, there will just be
one available vertex left on each side, and connected these two vertices reconstructs the desired
spanning tree of the K2024,2024.

Through this above bijection, we see that the answer to the problem is just the number of possible

sequences of 4046 vertices that alternate sides starting from a fixed side. This is just 20244046 .

Remarks: The general formula for the number of spanning trees in a labelled Km,n is known
(although hopefully not by students) to be mn−1nm−1. This problem can also be solved using
exponential generating functions or Kirchhoff’s matrix tree theorem.

11. (Tiebreaker) Give us a 8-character string (of letters and numbers) and tie is broken by the
highest CRC-16 hash value.

# from https://stackoverflow.com/questions/10564491/function-to-calculate-

# a-crc16-checksum

def crc16(string):

crc = 0

for char in string:

crc ^= ord(char)

for _ in range(8):

isOdd = crc % 2 == 1

crc //= 2

if isOdd:

crc ^= 0xa001

return crc

Proposed by Ishin Shah


