
Combinatorics and Computer Science Round
Solutions

1. Robert has five beads in his hand, with the letters C, M, I, M, and C, and he wants to make a circular
bracelet spelling “CMIMC.” However, the power went out, so Robert can no longer see the beads in his
hand. Thus, he puts the five beads on the bracelet randomly, hoping that the bracelet, when possibly
rotated or flipped, spells out “CMIMC.” What is the probability that this happens? (Robert doesn’t care
whether some letters appear upside down or backwards.)

Proposed by Lohith Tummala

Answer.
1

6

Solution. There are
5!

2!2!
= 30 ways to arrange these beads in a line, assuming that the C and M bead

pairs are indistinguishable. Out of these ways, there are exactly five of them that can be rotated to get
CMIMC: CMIMC, MIMCC, IMCCM, MCCMI, CCMIM Thus, since each of the thirty ways are equally

likely, we get
5

30
=

1

6

2. Every day, Pinky the flamingo eats either 1 or 2 shrimp, each with equal probability. Once Pinky has
consumed 10 or more shrimp in total, its skin will turn pink. Once Pinky has consumed 11 or more shrimp
in total, it will get sick. What is the probability that Pinky does not get sick on the day its skin turns
pink?

Proposed by Connor Gordon

Answer.
683

1024

Solution. Let P (x) denote the probability of success (Pinky turns pink but doesn’t get sick) assuming
that Pinky has eaten x shrimp already. Note that P (11) = 0 since Pinky would be sick. Also, P (10) = 1
since Pinky’s skin is pink but Pinky is not sick. After that, since Pinky can eat either one or two shrimp,
each with half chance,

P (x) =
1

2
(P (x+ 1) + P (x+ 2))

We can then compute the probabilities all the way to P (0).

P (9) =
1

2
, P (8) =

3

4
, P (7) =

5

8
, P (6) =

11

16
, · · ·

We notice that the denominator keeps doubling, while the numerator doubles and flips between adding one

or subtracting one. We eventually get our answer of
683

1024
.

3. There are 34 friends are sitting in a circle playing the following game. Every round, four of them are chosen
at random, and have a rap battle. The winner of the rap battle stays in the circle and the other three
leave. This continues until one player remains. Everyone has equal rapping ability, i.e. every person has
equal probability to win a round. What is the probability that Michael and James end up battling in the
same round?



Proposed by Michael Duncan

Answer.
2

17

Solution. The game lasts 11 rounds. By symmetry, the ith round of a game is equally likely to be any
of the

(
34
4

)
groups. There are

(
32
2

)
valid groups containing Michael and James. So the probability is just

11 ·
(
32
2

)
/
(
34
4

)
=

2

17
.

4. Let n and k be positive integers, with k ≤ n. Define a (simple, undirected) graph Gn,k as follows: its
vertices are all of the binary strings of length n, and there is an edge between two strings if and only if
they differ in exactly k positions. If cn,k denotes the number of connected components of Gn,k, compute

10∑
n=1

n∑
k=1

cn,k.

(For example, G3,2 has two connected components.)

Proposed by Robert Trosten and Allen Yang

Answer. 1088

Solution. Let n ≥ 1.

First observe the edge case: cn,n = 2n−1, as every string is only paired up with the string that differs in all
positions.

For 0 < k < n a parity argument will demonstrate cn,k = 1 for k odd and cn,k = 2 for k even. Handling

the sum yields the final result which is 1088 .

5. Consider a 12-card deck containing all four suits of 2, 3, and 4. A double is defined as two cards directly
next to each other in the deck, with the same value. Suppose we scan the deck left to right, and whenever
we encounter a double, we remove all the cards up to that point (including the double). Let N denote the
number of times we have to remove cards. What is the expected value of N?

Proposed by Michael Duncan

Answer.
138

55

Solution. We can use linearity of expectation to compute the number of doubles in the deck. There are
11 pairs of consecutive cards. In each pair, the second card is equally likely to be any of the 11 cards other
than the first card. Of these 11 cards, 3 of them match the first card. Thus the expected number of doubles
is 11 · 3

11 = 3.

However, if there is a group of three of the same card in a row, removing the first double will only leave
one card. And if all four cards of the same value are in a row, we remove cards twice. Therefore we also
have to track the number of triples and quadruples in the deck.

If there are two of the same value in a row, there is one double, and we remove cards once. If there are
three of the same value in a row, there are 2 doubles and 1 triple, and we remove cards once. If there are
four of the same value in a row, there are 3 doubles, 2 triples, and 1 quadruple, and we remove cards twice.
The total number of times we remove cards is

N = #doubles−#triples + #quadruples.



We can use a similar linearity of expectation argument to find E[#triples] and E[#quadruples]. For triples,
there are 10 sets of three cards in a row, and the probability that both the second and third card match
the first is

(
3
2

)
/
(
11
2

)
= 3

55 . For quadruples, there are 9 sets of 4 cards in a row, and the probability that the

second, third, and fourth cards match the first is
(
3
3

)
/
(
11
3

)
= 1

165 . Finally we compute

E[#doubles]− E[#triples] + E[#quadruples] = 11 · 3

11
− 10 · 3

55
+ 9 · 1

165
=

138

55
.

6. Consider a 4 × 4 grid of squares. We place coins in some of the grid squares so that no two coins are
orthogonally adjacent, and each 2 × 2 square in the grid has at least one coin. How many ways are there
to place the coins?

Proposed by Justin Hsieh

Answer. 256

Solution. We place coins on each row of the grid, starting from the top. There are a total of eight possible
configurations for each row, listed below (• denotes a coin, and · denotes no coin)

• 1: · · · ·
• 2A: • · · · (and its mirror image, 2B: · · · •)
• 3A: · • · · (and 3B: · · • ·)
• 4A: • · • · (and 4B: · • · •)
• 5: • · · •

The other configurations violate the condition that no two coins can be adjacent.

Each row can be followed by any other row, so long as both conditions are met. We will list out all possible
pairs of rows:

• 1 and (4A or 4B)

• 2A and (3B or 4B)

• 2B and (3A or 4A)

• 3A and (2B or 4A or 4B or 5)

• 3B and (2A or 4A or 4B or 5)

• 4A and (1 or 2B or 3A or 3B)

• 4B and (1 or 2A or 3A or 3B)

• 5 and (3A or 3B)

At this point we can make the following simplification: there are two types of configurations, “center” rows
with a coin in either of the center two places (3A, 3B, 4A, 4B), and “non-center” rows without a coin in
either of the center two places (1, 2A, 2B, 5). Each center row can be followed by two center rows and two
non-center rows. Each non-center row can be followed by two center rows.

Let xn be the number of configurations consisting of n rows and ending with a center row, and let yn be
the same thing for non-center rows. We have the following recurrences:

xn+1 = 2xn + 2yn, yn+1 = 2xn, x1 = 4, y1 = 4.



This recurrence gives

x2 = 16, y2 = 8

x3 = 48, y3 = 32

x4 = 160, y4 = 96.

The total number of valid configurations with 4 rows is x4 + y4 = 256 .

7. Alan is bored one day and decides to write down all the divisors of 12602 on a wall. After writing down
all of them, he realizes he wrote them on the wrong wall and needs to erase all his work. Every second, he
picks a random divisor which is still on the wall and instantly erases it and every number that divides it.
What is the expected time it takes for Alan to erase everything on the wall?

Proposed by Alan Abraham

Answer.
1372 · 112

3602

Solution. Let n = 12602 = 24 · 34 · 52 · 72, and let σ(x) denote the number of divisors of x. Instead
of picking a random remaining number after each second, it is equivalent for Alan to randomly order the
numbers at the beginning and then choose the leftmost number that does not divide any number he has
already chosen. With this model in mind, we see that the expected time is equivalent to the expected
number of divisors that Alan picks.

For any divisor d | n, we want to compute the probability that Alan picks d. Alan will pick d iff every
multiple of d (aside from d) lies to the right of it. Since there are σ(n/d) multiples of d, this happens with
probability 1

σ(n/d) . So by linearity of expectation, the expected number of divisors Alan selects will be∑
d|n

1

σ(n/d)
=

∑
d|n

1

σ(d)

Since 1
σ(x) is a multiplicative function it suffices to evaluate this function at prime powers. For any prime

power pk we can see ∑
d|pk

1

σ(d)
= 1 +

1

2
+ · · ·+ 1

k + 1
.

Hence, our answer is (
1 +

1

2
+ · · ·+ 1

5

)2 (
1 +

1

2
+

1

3

)2

=
1372 · 112

3602

8. Divide a regular 8960-gon into non-overlapping parallelograms. Suppose that R of these parallelograms are
rectangles. What is the minimum possible value of R?

Proposed by James Yang

Answer. 2240

Solution. Basically consider “lines” of parallelograms that connect opposite parallel sides of the 8960-
gon. Rectangles are forced when 2 lines corresponding to perpendicular pairs of sides intersect. This occurs
2240 distinct times. A construction for 2240 rectangles exists, just consider ”contracting” the polygon wrt
some parallel pair of sides, and tiling the difference. Then just do this like 4480 times.



9. Let p(k) be the probability that if we choose a uniformly random subset S of {1, 2, . . . , 18}, then |S| ≡ k
(mod 5).

Evaluate
4∑

k=0

∣∣∣∣p(k)− 1

5

∣∣∣∣ .
Proposed by Ishin Shah

Answer.
9349

327680

Solution. Let pn be the probability for our set being {1, 2 · · · , n}.
First, note that pk(3k − l) = pk(3k + l) for any given l as

Note that for any l, we know p(3k− l) is the sum of binomials in the form
(
k
i

)
, where i ≡ 3k− l mod 5. This

is the same sum as binomials in the form
(

k
k−i

)
. Note that k− i = −2k− l ≡ 3k− l, so p(3k− l) = p(3k+ l).

For a given k, let ak = pk(3k), bk = pk(3k + 1), ck = pk(3k + 2).

We have the following recurrences:

ak = pk(3k) =
pk−1(3k) + pk−1(3k − 1)

2
=

pk−1(3(k − 1) + 3) + pk−1(3(k − 1) + 2)

2
= ck−1

bk = pk(3k + 1) =
pk−1(3k) + pk−1(3k + 1)

2
=

pk−1(3(k − 1) + 3) + pk−1(3(k − 1) + 4)

2
=

bk−1 + ck−1

2

ck = pk(3k + 2) =
pk−1(3k + 2) + pk−1(3k + 1)

2
=

pk−1(3(k − 1) + 5) + pk−1(3(k − 1) + 4)

2
=

ak−1 + bk−1

2

Our starting values are (a0, b0, c0) = (1, 0, 0). Note that if we subtract
1

5
from each of them, the recurrences

still hold.

We could also make our calculations simpler if we multiply by 5∗2k, so we could make a′k = 5(ak− 1
5 )∗2

k, b′k =
5(bk − 1

5 ) ∗ 2
k, c′k = 5(ck − 1

5 ) ∗ 2
k.

Our new recurrences are a′k = 2c′k−1, b
′
k = b′k−1 + c′k−1, c

′
k = a′k−1 + b′k−1

This gets c′k = b′k−1 + 2c′k−2 so bk−1 = c′k − 2c′k−2. Combining this with both equations gives

c′k+1 = c′k + 3′ck − 1 − 2c′k−2 so c′k = x(−ϕ)k + y(
1

ϕ
)k + z2k. However, c′k/2

k goes to 0 as the probability

tends to 1/5 so z = 0 and we could just make this c′k = −c′k−1 + c′k−2.

This gets c′k = 2c′k−2 − c′k−3 which gets b′k−1 = −c′k−3 so b′k = −c′k−2.

Our final solution is the expression

(|a′k|+ 2|b′k|+ 2|c′k|)
2k ∗ 5

=
(|c′k−2|+ |c′k−1|+ |c′k|)

2k−1 ∗ 5

Note that by the linear recurrence, c′k−2, c
′
k−1 have different signs, so |c′k−2|+ |c′k−1| = |c′k−2 − c′k−1| = |ck|.

Thus, our solution is
|c′k|

2k−2 ∗ 5
We get c′0 = −1, c′1 = 3. Thus, |c′k| turns into the Lucas series.

Computing enough values of the Lucas series gets
9349

327680
.



10. Let an be the number of ways to express n as an ordered sum of powers of 3. For example, a4 = 3, since

4 = 1 + 1 + 1 + 1 = 1 + 3 = 3 + 1.

Let bn denote the remainder upon dividing an by 3. Evaluate

32025∑
n=1

bn.

Proposed by Alan Abraham

Answer. 4102652

Solution. One can show that bn = 1 iff n+ 1 is of the form 3k or 2 · 3k (for nonnegative integer k) and
bn = 2 iff n+ 1 is of the form 3a + 3b (for distinct nonnegative integers a, b), and thus our sum is equal to

32025+1∑
n=2

bn−1 = b32025 + b32025−1 − b0 +

32025−1∑
n=1

bn−1

= 2 + 1− 1 +

(
1 · (2025 · 2) + 2 ·

(
2025

2

))
= 2 + 2025 · 2026 = 4102652 .

To prove the claim regarding the explicit formula for bn we use generating functions. Let P (x) =
∑∞

n=0 x
3n .

Then in F3[[x]] we have

∞∑
n=0

bnx
n = 1 + P (x) + P (x)2 + · · · = (1− P (x))−1.

Note that we also have P (x)3 = P (x)− x, so (1− P (x))(P (x) + P (x)2) = x. Hence,

∞∑
n=0

bnx
n+1 = P (x) + P (x)2,

which proves the claim.

11. (Tiebreaker) I wrote a computer program that prints out rows 0 through 100 of Pascal’s triangle (the
last row is 1, 100, 4950, . . .). Due to the way my computer stores integers, some of the numbers appear to
be negative. Particularly, integer n appears negative if and only if ⌊n/231⌋ is odd. Estimate how many
negative numbers are printed out.

Proposed by Justin Hsieh and Rohan Jain

Answer. 1697


