
Algebra and Number Theory Round Solutions

1. Four runners are preparing to begin a 1-mile race from the same starting line. When the race
starts, runners Alice, Bob, and Charlie all travel at constant speeds of 8 mph, 4 mph, and 2
mph, respectively. The fourth runner, Dave, is initially half as slow as Charlie, but Dave has a
superpower where he suddenly doubles his running speed every time a runner finishes the race.
How many hours does it take for Dave to finish the race?

Proposed by Lohith Tummula

Answer.
13

32

Solution. In the first 1/8 hours, Alice finishes the race, and Dave has only finishes an eighth
of the race, since he was traveling at 1 mph. However, his speed is now doubled to 2 mph.

In the next 1/8 hours, Bob finishes the race, and Dave travels an extra fourth of the race, with
5/8 miles to go. His speed now doubles to 4 mph, so he is now twice as fast as Charlie.

This means that he will finish the rest of the race in

5

8
· 1
4
=

5

32
hours

This means that Dave takes 1/8 + 1/8 + 5/32 =
13

32
hours.

2. I plotted the graphs y = (x − 0)2, y = (x − 5)2, ... y = (x − 45)2. I also draw a line y = k, and
notice that it intersects the set of parabolas at 19 distinct points. What is k?

Proposed by Lohith Tummala

Answer.
2025

4
For most k values, the line intersects the set of parabolas at 20 points, two for each parabola.
This special value of k for 19 intersections occur when (x− 0)2 and (x− 45)2 intersect:

(x− 0)2 = (x− 45)2

x = −x+ 45

x = 45/2

This implies that k = y = x2 =
2025

4
.

3. Compute 33
···3

mod 333, where there are 33
3
3’s in the exponent.

Proposed by Allen Yang



Answer. 36

Solution. Observe P = our number is just a very large tower of 3’s. We can mod bash using
CRT and Fermat.

333 = 32 · 37 and P ≡ 0 mod 9. Then we need to find P mod 37.

By Fermat, 336 ≡ 1 mod 37 so we need to evaluate P mod 36.

Since 3 ≡ −1 mod 4 and the exponent is odd, we have P ≡ −1 mod 4 and P ≡ 0 mod 9, giving
us P ≡ 27 mod 36. and consequently, P ≡ 327 mod 37. We can cube 3 three times, modding it
by 37 each time. Observe 273 ≡ (−10)3 ≡ −1000 + 999 ≡ −1 mod 37, and combining this with
P ≡ 0 mod 9 gives us P ≡ 36 mod 333.

4. Consider the system of equations

logx y + logy z + logz x = 8

loglogy x z = −3

logz y + logx z = 16

Find z.

Proposed by Lohith Tummala

Answer. 64

Solution.

From the second equation, (logy x)
−3 = z, implying that logy x = z−1/3. This means that

logx y = z1/3. Substitute this into the first equation to get

z1/3 + logy z + logz x = 8

Now, let’s rewrite the third equation:

logz y + logx z =
1

logy z
+

1

logz x
=

logy z + logz x

logy z · logz x
= 16

=⇒ logy z + logz x = 16 · (logy z · logz x) = 16 · logy x

=⇒ logy z + logz x = 16z−1/3

Plug this into the new first equation to get

z1/3 + 16z−1/3 = 8

If we let a = z1/3, we get a quadratic:

a+
16

a
= 8 =⇒ a2 + 16− 8a = 0

Thus, a = 4, so z = 64 .



5. Consider all positive multiples of 77 less than 1, 000, 000. What is the sum of all the odd digits
that show up?

Proposed by Ishin Shah

Answer. 194832

Solution.

Note that 77 ∗ 12987 = 999, 999.

Then, note that if I take some multiple of 77 and multiply it by 10 and subtract 999, 999 times
its billions digit, I get the same number but its digit rotated. Ex: 123, 508 and 235, 081 are both
multiples.

Thus, to see the number of times a number appears in some position, we could rotate that position
back to the ones digit. This means to count the number of times a digit appears, we count the
number of times it appears in the ones digit and multiply by 9 (This doesn’t work for counting
the number of times 0 appears due to leading 0s but we don’t need them anyways).

Then, each of the odd digits appear 1299 times except for 3 which appears 1298 times as a ones
digits since 77 ∗ 12989 = 1, 000, 153.

Thus, we get 1299 ∗ (1 + 3 + 5 + 7 + 9) − 3 = 32472 to count appearances in the ones digit and
multiply by 6 to get 194832 to get the final amount.

6. Real numbers x and y are chosen independently and uniformly at random from the interval [−1, 1].
Find the probability that

|x|+ |y|+ 1 ≤ 3min{|x+ y + 1|, |x+ y − 1|}.

Proposed by Justin Hsieh

Answer. 5
16

Solution.

We will find the area of the region of square [−1, 1]2 satisfying the given condition.

Let c = x+ y. We can assume that c ≥ 0; the case c ≤ 0 is symmetric since min{|c+1|, |c− 1|} =
||c| − 1|.
For a given value of c ≥ 0, we want to find all x, y ∈ [−1, 1] such that x + y = c and |x| + |y| ≤
3|c− 1| − 1. First of all, by the triangle inequality this is only possible when c ≤ 3|c− 1| − 1, so
c ≤ 1

2 or c ≥ 2.

If c ≤ 1
2 , we have |x| + |y| ≤ 2 − 3c, since |c − 1| = 1 − c. The solutions lie on a segment

of length
√
2(2 − 3c), contained entirely within [−1, 1]2 (particularly, the line segment between

(−1 + 2c, 1− c) and (1− c,−1 + 2c)). Thus the region of solutions for (x, y) is a trapezoid with
bases 2

√
2 and 1

2

√
2, and height 1

2 · 1√
2
. This has area 5

8 .

If c ≥ 2, then the only possible solution is (x, y) = (1, 1). This does not contribute to the area of
valid solutions.



Accounting for the symmetric case c ≤ 0, we find that the area of valid (x, y) is 5
4 , and the total

area of the square [−1, 1]2 is 4. This makes the final answer
5

16
.

7. Consider a recursively defined sequence an with a1 = 1 such that, for n ≥ 2, an is formed by
appending the last digit of n to the end of an−1. For a positive integer m, let ν3(m) be the largest
integer t such that 3t | m. Compute

810∑
n=1

ν3(an).

Proposed by Dennis Chen

Answer. 930

Solution.

Note that ν3(an) = 1 when the last digit of n is 2, 3, 5, or 6, as the sum of the digits of an is
then divisible by 3 but not 9. Between 1 and 810, there are 810

10 · 4 = 324 of these numbers, which
contributes 324 to our sum.

Now note that 9 | an when n is of the form 10m, 10m − 1, or 10m − 2 for some positive integer
m. Also note that a10m−1 =

a10m
10 , so ν3(a10m−1) = ν3(a10m). Thus our sum becomes

324 +
81∑

m=1

(ν3(a10m) + ν3(a10m−1) + ν3(a10m−2)) ,

which simplifies to

324 + 2

81∑
m=1

ν3(a10m) +

81∑
m=1

ν3(a10m−2).

We first handle
∑

ν3(a10m). Note that

a10m = 1234567890 ·
m−1∑
i=0

1010i

= 1234567890 · 10
10m − 1

1010 − 1
,

so

ν3(a10m) = ν3(1234567890) + ν3

(
1010m − 1

1010 − 1

)
= 2 + ν3(10

10m − 1)− ν3(10
10 − 1)

= 2 + (ν3(10− 1) + ν3(m))− (ν3(10− 1) + ν3(10))

= 2 + ν3(m).



Thus

81∑
m=1

ν3(a10m) =
81∑

m=1

(2 + ν3(m))

= 162 + ⌊81
3
⌋+ ⌊81

9
⌋+ ⌊81

27
⌋+ ⌊81

81
⌋

= 162 + 27 + 9 + 3 + 1

= 202.

Now we handle
∑

ν3(a10m−2), which is substantially harder. Note that

a10m−2 = 12345678 + 1234567890 · 108 ·
m−2∑
i=0

1010i

= 12345678 + 1234567890 · 108 · 10
10(m−1) − 1

1010 − 1
.

(You can check the final equation is valid even for m = 1.)

Here is the crucial claim: given a positive integer k, for every range of integers m with size 3k,
there is exactly one integer m such that 3k+2 | a10m−2.

Note that ν3(12345678) = ν3(1234567890) = 2, so divide a10m−2 by 9. This translates our desired
condition to

3k | 12345678
9

+
1234567890

9
· 108 · 10

10(m−1) − 1

1010 − 1
.

Stating this with modular arithmetic gives us

1010(m−1) − 1

1010 − 1
≡ − 12345678

123456789 · 108
(mod 3k).

Since ν3(10
10 − 1) = 2 by Lifting the Exponent,

1010(m−1) − 1 ≡ −12345678 · (1010 − 1)

123456789 · 108
(mod 3k+2).

The actual value of the right-hand side does not matter; all that is important is that, when
converted into an integer, it is divisible by 9. Let it be 9C, where C is an integer. Then we want

1010(m−1) ≡ 9C + 1 (mod 3k+2),

and rewriting this gives us

(1010)m ≡ 9(10C + 1) + 1 (mod 3k+2).



Note that by Lifting the Exponent, the smallest integer x that satisfies (1010)x ≡ 1 (mod 3k+2)
is 3k. Also, no matter what m is, it is evident that (1010)m is congruent to 1 mod 9. Thus every
residue with a remainder of 1 when divided by 9 is achieved exactly once, as there are 3k such
residues.

Thus,

81∑
m=1

ν3(a10m−2) = 81 · 2 + 81

3
+

81

9
+

81

27
+

81

81

= 162 + 27 + 9 + 3 + 1

= 202.

Our final answer is then

324 + 2

81∑
m=1

ν3(a10m) +

81∑
m=1

ν3(a10m−2) = 324 + 2 · 202 + 202 = 930 .

8. Let P (x) = x4 + 20x3 + 29x2 − 666x+ 2025. It is known that P (x) > 0 for every real x.

There is a root r for P in the first quadrant of the complex plane that can be expressed as

r =
1

2

(
a+ bi+

√
c+ di

)
, where a, b, c, d are integers. Find a+ b+ c+ d.

Proposed by Ishin Shah and Henry Zheng

Answer. 322

Solution. Because P (x) is strictly positive, we P (x) can be written as the sum of two squares
of polynomials. Thus, we get it as (ax2 + bx + c)2 + (mx2 + nx + p)2 = 0. Thus, we get (ax2 +
bx+ c)± i(mx2+nx+ p) = 0. By the form of the solution, it must be a root of a polynomial that
is rational integers, so our polynomial at the end should be x2 +Mx+N where M and N are in
the form p+ qi with p and q as integers. Thus, we can express P as a sum of squares of integer
polynomials of degree at most 2. Since the only way to express 1 as a sum of squares is 12 + 02,
we have that

P (x) = (x2 +Ax+B)2 + (Cx+D)2

This means B2+D2 = 2025. Note that 2025 = 34 · 52. We can quickly verify that neither of B or
D can be 0, so this means that one of them is ±9 ·3 = ±27 and the other is ±9 ·4 = ±36 Note that
since the coefficient of x3 is 2A we have that A = 10. The coefficient of x will be 2AB + 2CD.
So AB + CD = −333 This means 10B + CD = −333. Since the LHS must be odd, it must be
the case that D = ±27. We can check that this means B = −36, D = 27, and C = 1. So we can
verify that

P (x) = (x2 + 10x− 36)2 + (x+ 27)2

Hence,
P (x) = (x2 + (10 + i)x− 36 + 27i)(x2 + (10− i)x− 36− 27i)



This has roots 1
2

(
−10 + e1i+ e2

√
99− 20e1i+ 144 + 108e1i

)
where e1, e2 ∈ {−1, 1}. This equals

1

2

(
−10 + e1i+ e2

√
243 + 88e1i

)
The positive quadrant root will be 1

2

(
−10 + i+

√
243 + 88i

)
which gives a sum of 322 .

9. Find the largest prime factor of 455 − 1.

Proposed by Henry Zheng

Answer. 2851

Solution.

Let a = 45. We can first notice that: a5 − 1 = (a− 1)(a4 + a3 + a2 + a+ 1)

Consider the general factorization of the following:

a4 + a3 + a2 + a+ 1 = (a2 + 3a+ 1)2 − 5a(a+ 1)2

Notice that in this case, 45 is 5 times a square (in fact, this works for any 5 times a square), and
we get that:

a5 − 1 = 44((452 + 3(45) + 1)2 − 5(45)(46)2)

a5 = 44((2161)2 − (690)2) = (44)(2851)(1471)

and we can factor by difference of squares, which gives us that we want to find the largest factor
of (44)(2851)(1471) Now, just using the square root fact, we test all primes below the square root
of 2851, and we see that in fact 2851 is prime, which means that our largest prime factor is indeed
2851 .

10. Let an be a recursively defined sequence with a0 = 2024 and an+1 = a3n + 5a2n + 10an + 6 for
n ≥ 0. Determine the value of

∞∑
n=0

2n(an + 1)

a2n + 3an + 4
.

Proposed by Alan Abraham

Answer. 1
2026

With some divined intuition, we add 2 to both sides to see that

an+1 + 2 = (an + 2)(a2n + 3an + 4)

Taking the reciprocal of both sides and then using partial fraction decomposition gives

1

an+1 + 2
=

1

2(an + 2)
− an + 1

2(a2n + 3an + 4)



an + 1

a2n + 3an + 4
= −2

(
1

an+1 + 2
− 1

2(an + 2)

)
2n(an + 1)

a2n + 3an + 4
= −

(
2n+1

an+1 + 2
− 2n

an + 2

)
So we can deduce that the sum we wanted to evaluate telescopes. In particular, it approaches

20

a0 + 2
− 2N

aN + 2

It’s clear that the second fraction approaches 0 (an grows REALLY fast), so our answer is
1

2026

11. (Tiebreaker) For x ∈ (0, 1), the function f(x) = max{| sin(1/x)|, | sin(2/x)|} satisfies 0 ≤ f(x) ≤
1. Estimate the average value of f on (0, 1), writing your answer in the form 0.abcdef.

Proposed by Robert Trosten

Answer. 0.863978


