
Geometry Round Solutions

1. Let ABCD be a rectangle with AB = 5. Let E be on AB and F be on CD such that AE =
CF = 4. Let P and Q lie inside ABCD such that triangles AEP and CFQ are equilateral. If
E, P , Q, and F lie on a single line, find BC.

Proposed by Connor Gordon

Answer. 3
√
3

Solution.

Consider the base and height of the rectangle as triangle CFQ slides along EP . If Q = E, then
the base and height are 6 and 2

√
3 respectively. If Q = P , then the base and height are 4 and

4
√
3 respectively. These both vary linearly, so when the base is 5, the height is 3

√
3 .

Alternatively, note that the horizontal distance between P and Q is the same as the horizontal
distance between E and B, which is 1. Since the horizontal distances between (F and Q) and (E
and P ) are both 2, the horizontal distances between (F and P ) and (E and Q) are both 1, so
the horizontal distance between E and F is 3. Drawing in the natural 30-60-90 triangle gives a

height of 3
√
3 .

2. Let ABCDEF be a regular hexagon of side length 1. Compute the area of the intersection of the
circle centered at A passing through C and the circle centered at D passing through E.

Proposed by Robert Trosten

Answer. 5π
6 −

√
3

Solution.



The first thing we note is that, since the hexagon is regular, the diagonals AC and AE have the
same length. In particular, Γ1 passes through E and Γ2 passes through C. Consider the sectors
EAC and CDE. By symmetry the triangle △EAC is equilateral; we can find its sidelength using
the Law of Cosines to be

√
3. So the area of this intersection will be given by

(area of sec. EAC) + area of sec. CDE)

−(area of △EAC + area of △CDE).

The painstaking computation (it’s not so bad) yields an area of
5π

6
−
√
3 .

3. Circles C1, C2, and C3 are inside a rectangle WXY Z such that C1 is tangent to WX, ZW , and
Y Z; C2 is tangent to WX and XY ; and C3 is tangent to Y Z, C1, and C2. If the radii of C1, C2,
and C3 are 1, 1

2 , and
2
3 respectively, compute the area of the triangle formed by the centers of C1,

C2, and C3.

Proposed by Connor Gordon

Answer.
√
6
3

Solution. Let the centers be O1, O2, and O3 respectively, and draw the bounding rectangle
around △O1O2O3. The desired area is the area of this rectangle minus the area of three triangles.

For the bottom left triangle, note O1O3 = 5
3 , while the vertical leg has length 1 − 2

3 = 1
3 .

Pythagoras gives us the horizontal leg is 2
√
6

3 , so its area is
√
6
9 .

For the bottom right triangle, note O2O3 = 7
6 , while the vertical leg has length 3

2 − 2
3 = 5

6 , so

Pythagoras gives the horizontal leg is
√
6
3 , so its area is 5

√
6

36 .

For the top triangle, note that the horizontal leg is 2
√
6

3 +
√
6
3 =

√
6, while the vertical leg is

5
6 − 1

3 = 1
2 , so its area is

√
6
4 .

The rectangle then has length
√
6 and height 5

6 , so its area is 5
√
6

6 .

Combining everything gives

(30− 4− 5− 9)
√
6

36
=

√
6

3
.



4. Let ABC be an equilateral triangle with side length 1. Points D and E lie on BC and AC respec-
tively such that △BDE is right isosceles, while points F and G lie on BC and AB respectively
such that △CFG is right isosceles. Find the area of the intersection of △BDE and △CFG.

Proposed by Ishin Shah

Answer. 2
√
3−3
4

Solution.

Let X be the intersection of BE and CG. Since ∠EBD = ∠FCG = 45◦, we have BXC is an
isosceles right triangle with right angle at X. Since this is an iscosceles right triangle, the area of
BXC is 1·1/2

2 = 1
4 .

Also, let Y be the intersection between FG and BE. Then, the area of the intersection is equal
to the area of BXC minus twice the area of BFY. This simplifies to 1

4 minus BF 2 since twice
the area of BFY is BF 2.

Now, note that BF
√
3 = GF = FC, and since BF + FC = 1, we get BF =

√
3−1
2 . Then,

BF 2 = 4−2
√
3

4 . This makes our final answer 1
4 − 4−2

√
3

4 =
2
√
3− 3

4

5. Triangle ABC has AB = 13, BC = 14, and AC = 15. Let P lie on BC, and let D and E be the
feet of the perpendiculars from P onto AB and AC respectively. If AD = AE, find this common
length.

Proposed by Connor Gordon

Answer. 21
2

Solution.



Note that △APD and △APE are congruent by HL, so AP is the angle bisector of ∠A, and
PD = PE. By Heron’s formula, the area of △ABC is 84. We can also express the area of
△ABC as the sum of the areas of △APB and △APC, which is

1

2
AB · PD +

1

2
AC · PE =

1

2
(AB +AC) · PD = 84.

This establishes PD = PE = 6.

By the angle bisector theorem, PC = 15
2 . By the Pythagorean theorem on △CEP , we find

EC = 9
2 , so AE = AC − EC = 21

2 .

6. Andrew Mellon found a piece of melon that is shaped like a octagonal prism where the bases are
regular. Upon slicing it in half once, he found that he created a cross-section that is an equilateral
hexagon. What is the minimum possible ratio of the height of the melon piece to the side length
of the base?

Proposed by Lohith Tummala

Answer. 2
√
1 +

√
2

Solution. First, we present the optimal solution. Let ABCDEFGH be the vertices of one of
the octagonal bases, and let A′B′C ′D′E′F ′G′H ′ be the vertices of the other octagonal bases, such
that AA′, BB′, and so on are edges of the prism. Assuming that we fix the size of the base so
that each edge of the base has side length 1, the slice that cuts through AC and E′G′ will have
the minimum possible prism height.

The slice will cut through C and E′, meaning that it will cut through the midpoint of DD′

(call it X) on the way. This means that for an equilateral hexagon cross section, we want the
length of AC to be equal to the length of CX. The length of AC, either through Law of Cosines

or Pythagorean Theorem, can be found to be
√
2 +

√
2. We can also use Pythagorean theorem

to find CX:
(CD)2 + (DX)2 = (CX)2

1 +

(
h

2

)2

= 2 +
√
2



h = 2

√
1 +

√
2

To see why this minimizes the height, notice that the only other way we can form a hexagonal
cross section is to slice along A and any point on CD (call it Y ), excluding C (since we just
did that) and D (since that creates a rectangular cross section). Call this point Y . (This cut
is mirrored across the prism center onto the other base to EZ since a cut of the prism into half
must cross the center of the prism. Here, Y Z is a line that goes through the center of the prism.)
We see that AY > AC, meaning that for this hexagon to be equilateral, the two side lengths of
the hexagon that traverse the non-base faces of the prism must also be longer. This necessarily
increases the height. Furthermore, the length Y E decreases, meaning that in the right triangle
Y EE′, with a decrease in Y E and an increase in Y E′ (due to the hexagon side lengths increasing),
the length EE′ must necessarily increase. Thus, the height increases as we move Y away from C.
Thus, the minimum height is obtained with a slice through AC.

7. An irregular octahedron has eight faces that are equilateral triangles of side length 2. However,
instead of each vertex having four “neighbors” (vertices that share an edge with it) like in a
regular octahedron, for this octahedron, two of the vertices have exactly three neighbors, two
of the vertices have exactly four neighbors, and two of the vertices have exactly five neighbors.
Compute the volume of this octahedron.

Proposed by Connor Gordon

Answer. 2
√
2

Solution. First, consider the two vertices that have three neighbors. We claim that the ”neigh-
borhood” of each of these vertices must look like a tetrahedron (namely the vertex and its three
neighbors are the vertices of a tetrahedron).

To see this, consider one such vertex, call it A, and suppose its neighbors are B1, B2, and B3.
Consider the two equilateral triangular faces containing edge AB1. Since B2 and B3 are the only
other neighbors of A, they must be AB1B2 and AB1B3. However, each of AB2 and AB3 must
be edges of two equilateral triangular faces, so we must also have that AB2B3 is an equilateral
triangle. Thus AB1B2B3 forms a tetrahedron. The same reasoning applies to the other vertex,
call it A′ and its neighbors B′

1, B
′
2, and B′

3.

So now we have these two tetrahedra, which give us 8 vertices in total. This is too many, as
an octahedron with triangular faces must have 6 vertices (to see this, note that we can get the
number of edges via E = 8·3

2 = 12, as counting all of the edges of all of the faces exactly double-
counts the edges of the polyhedron, and use V + F − E = 2 to get V = 6). As such, we want to
”glue” these tetrahedra together so some of their vertices coincide (and then connect everything
else as appropriate).

We don’t want to mess with A and A′, as gluing them to anything will give them more neighbors.
Since we want to decrease our net number of vertices by 2, suppose we glue B1B2 to B′

1B
′
2, so

B1 = B′
1 and B2 = B′

2. We are left with six vertices, namely A, A′, B1, B2, B3, and B′
3, and

we can check that A and A′ have three neighbors while B1 and B2 have five neighbors (they’re
connected to everything!). As it stands, B3 and B′

3 still only have three neighbors, but if we could
connect them to each other, then they would each have four neighbors while not interfering with
everything we’ve already done!



All that remains is to connect B3 and B′
3 in a manner that makes all of the resulting faces

equilateral triangles. To do this, imagine the the two tetrahedra as being connected by a ”hinge.”
If we move B3 and B′

3 as far apart from each other as possible, it’s not too hard to see that
B3B

′
3 = 2

√
3 > 2 in this case (B1B

′
3B2B3 is a rhombus with diagonals 2 and 2

√
3). We can then

swing the two tetrahedra closer together until B3B
′
3 = 2, connect them with an edge, and note

that the two new faces, B1B3B
′
3 and B2B3B

′
3, are equilateral triangles with side length 2. Thus

we have (uniquely, up to relabeling!) constructed such an octahedron.

Now it remains to compute the volume of this octahedron. The key observation is that we can
decompose AA′B1B2B3B

′
3 into three disjoint regular tetrahedra, namely AB1B2B3, A

′B1B2B
′
3,

and B1B2B3B
′
3 (take a moment to convince yourself of this). With this, we can easily compute

the volume to be 3 · 23
√
2

12 = 2
√
2 .

Remark: This solid is called a tritetrahedron, or boat:

(https://mathworld.wolfram.com/Tritetrahedron.html).

8. Let ω and Ω be circles of radius 1 and R > 1 respectively that are internally tangent at a point
P . Two tangent lines to ω are drawn such that they meet Ω at only three points A, B, and C,
none of which are equal to P . If triangle ABC has side lengths in a ratio of 3 : 4 : 5, find the sum
of all possible values of R.

Proposed by Connor Gordon

Answer. 11
2

Solution. The right angle means the hypotenuse of triangle ABC is a diameter of Ω, so the
side lengths of triangle ABC are 6

5R, 8
5R, and 2R. In all configurations, there will be one point,

say point A, which is on both tangent lines. We can get three different configurations based on
the lengths of the sides adjacent to A.

First, suppose A is the vertex between the sides of length 8
5R and 2R, we can see that ω is the

A-mixtilinear incircle of triangle ABC, which has radius r sec2(A2 ), where r is the inradius of
triangle ABC, which we can compute to be 2

5R. We also compute sec2(A2 ) to be 2
1+ 4

5

= 10
9 , so

1 = 2
5R · 10

9 , which means R = 9
4 .

Similar calculations for when A is the right angle or between the sides of length 6
5R and 2R gives

radii of 5
4 and 2 respectively. This gives a sum of 11

2 .

https://mathworld.wolfram.com/Tritetrahedron.html


9. Quadrilateral ABCD is inscribed in a circle such that the midpoints of its sides also lie on a
(different) circle. Let M and N be the midpoints of AB and CD respectively, and let P be the
foot of the perpendicular from the intersection of AC and BD onto BC. If the side lengths of
ABCD are 1, 3,

√
2, and 2

√
2 in some order, compute the greatest possible area of the circumcircle

of triangle MNP .

Proposed by Connor Gordon

Answer. 37
40π

Solution.

Note that by similar triangles, two of the edges formed by the midpoints are parallel to AC,
while two of the edges formed by the midpoints are parallel to BD, so the polygon formed by the
midpoints is a parallelogram, and thus a rectangle since it is also cyclic. It follows that AC and
BD are perpendicular.

Key Claim: The midpoints of the sides and the four perpendiculars from the intersection of the
diagonals to the sides lie on a single circle.

Proof: For conveninence, label the midpoints M1, M2, M3, and M4 in order, let K be the
intersection of the diagonals, and let P1, P2, P3, and P4 be the perpendiculars from M3, M4, M1,
and M4 respectively onto the opposite sides (such that M1 and P1 lie on the same side, etc). Note
that M1M3 and M2M4 are diameters of the circumcircle of M1M2M3M4 by nature of it being a
rectangle.

By construction, that △M1P3M3 has a right angle at P3, and thus P3 lies on the circle with
diameter M1M3, which is the circle in question. A similar argument applies to the other Pi’s. □

Now, we compute the circumradius of this circle. Note that the side lengths of the rectangle are
half the side lengths of AC and BC, so the length of the diagonals (also the diameter of the

circle) is
√
AC2+BC2

2 . Dividing by 2 gives the circumradius, and then squaring and multiplying by

π gives the area, which will be
(
AC2+BD2

16

)
π.



Letting AB = a, BC = b, CD = c, and DA = d for brevity, the formula for the lengths of the
diagonals of a cyclic quadrilateral gives

AC2 =
(ac+ bd)(ad+ bc)

(ab+ cd)
BD2 =

(ac+ bd)(ab+ cd)

(ad+ bc)

Since ABCD has perpendicular diagonals a2 + c2 = b2 + d2, and thus the pairs of opposite sides
must be (1, 3) and (

√
2, 2

√
2). Then ac+ bd = 7, and by symmetry it doesn’t really matter how

the others are assigned. As such, the “greatest possible area” was a red herring, as there is only
one possible value.

We now compute it. We compute that ab + cd and ad + bc are 5
√
2 and 7

√
2 in some order, so

AC2 +BD2 = 7(5
√
2

7
√
2
+ 7

√
2

5
√
2
) = 74

5 . Multiplying by π
16 gives 37

40π .

10. Let Ω be a unit circle with diameter AB and center O. Let C, D be on Ω and lie on the same
side of AB such that ∠CAB = 50◦ and ∠DBA = 70◦. Suppose AD intersects BC at E. Let the
perpendicular from O to CD intersect the perpendicular from E to AB at F . Find the length of
OF .

Proposed by Puhua Cheng

Answer. 2
√
3

3

Solution. (By Karn Chutinan)

Let AC and BD meet at P . Then we find E is the orthocenter of △PAB. Now, remark that
the circumcenter of (PCED) lies on PE and the perpendicular bisector of CD, hence it is F . It
thus follows that OF is a diameter of the nine-point circle of △PAB, so OF is the circumradius
of PAB.

This is not hard to compute now; law of sines gives us

R =
AB

2 sin∠APB
=

2

2 sin 60◦
=

1
√
3
2

=
2
√
3

3
.



11. (Tiebreaker) A cube and a regular octahedron are inscribed in a sphere of radius 1 such that
the space diagonals of the octahedron are parallel to the edges of the cube. Approximate the
proportion of the sphere (by volume) that is contained in the intersection of the cube and the
octahedron. Express your answer in the form 0.abcdef .

Proposed by Connor Gordon

Answer. 0.24621355

Solution.

4
3(1− 3(1− 1√

3
)3))

4
3π


