
Combinatorics and Computer Science Round
Solutions

1. For each positive integer n (written with no leading zeros), let t(n) equal the number formed by
reversing the digits of n. For example, t(461) = 164 and t(560) = 65. For how many three-digit
positive integers m is m+ t(t(m)) odd?

Proposed by David Altizio

Answer. 50

Solution. If m has no trailing zeros, then t(t(m)) = m, and so m + t(t(m)) = 2m is even. It
follows that m is equal to 10km0 for some positive integer k. In this case, t(m) results in a number
with k fewer digits than m and, more specifically, t(t(m)) = m0. In turn,

m+ t(t(m)) = 10km0 +m0 = (10k + 1)m0,

and so m0 must be odd.

There are two cases to consider. If m is divisible by 100, there are five possible integers: 100,
300, 500, 700, 900. Otherwise, m is divisible by 10 but not 100, so m is of the form p q 0, where
q is odd. There are five choices for q and nine choices for p, yielding 45 total values for m in this
case. Combining both cases yields a final answer of 50 .

2. Robert has two stacks of five cards numbered 1–5, one of which is randomly shuffled while the
other is in numerical order. They pick one of the stacks at random and turn over the first three
cards, seeing that they are 1, 2, and 3 respectively. What is the probability the next card is a 4?

Proposed by Connor Gordon

Answer. 121
122

Solution. By Bayes’s rule, the probability that they picked the ordered deck is

1
2(1)

1
2(1) +

1
2(

1
60)

=
60

61
,

while the probability they picked the shuffled deck is 1
61 . The former case guarantees that 4 is the

next card, while the latter case has a 1
2 probability of 4 being the next card, for a total probability

of 60
61 + 1

2(
1
61) =

121
122 .

3. Milo rolls five fair dice which have 4, 6, 8, 12, and 20 sides respectively (and each one is labeled
1-n for appropriate n. How many distinct ways can they roll a full house (three of one number
and two of another)? The same numbers appearing on different dice are considered distinct full
houses, so (1, 1, 1, 2, 2) and (2, 2, 1, 1, 1) would both be counted.

Proposed by Robert Trosten



Answer. 248

Solution. We will case on which dice form the three-of-a-kind (ToK). For each case, suppose
the smallest die in the ToK has t sides, and the smallest die in the pair has p sides. Then the
ToK can take any value 1 to t, and the pair can take any value 1 to p. Also, the ToK and pair
cannot take the same value. Then the number of full houses in this case is

min{t, p} · (max{t, p} − 1) = 4 · (max{t, p} − 1).

If the ToK is on the dice with...

• 4, 6, 8 sides: 4 · (12− 1) = 44 full houses

• 4, 6, 12 sides: 4 · (8− 1) = 28 full houses

• 4, 6, 20 sides: 4 · (8− 1) = 28 full houses

• 4, 8, 12 sides: 4 · (6− 1) = 20 full houses

• 4, 8, 20 sides: 4 · (6− 1) = 20 full houses

• 4, 12, 20 sides: 4 · (6− 1) = 20 full houses

• 6, 8, 12 sides: 4 · (6− 1) = 20 full houses

• 6, 8, 20 sides: 4 · (6− 1) = 20 full houses

• 6, 12, 20 sides: 4 · (6− 1) = 20 full houses

• 8, 12, 20 sides: 4 · (8− 1) = 28 full houses

Adding all of these cases, we get a total of 248 full houses.

4. There are 5 people at a party. For each pair of people, there is a 1/2 chance they are friends,
independent of all other pairs. Find the expected number of pairs of people who have a mutual
friend, but are not friends themselves.

Proposed by Patrick Xue

Answer. 185
64

Solution. By linearity of expectation, it suffices to find the probability that a given pair has a
mutual friend but are not friends themselves, then we can multiply by the number of pairs, which
is
(
5
2

)
= 10.

Given a pair, there is a 1
2 chance they are not friends, and three potential candidates for a

mutual friend. The probability that a specific other person is a mutual friend is (12)
2 = 1

4 , so the
probability that they have no mutual friends is (34)

3. Thus, the probability they are not friends

but have a mutual friend is 1
2(1− (34)

3) = 37
128 . Multiplying by 10 gives 185

64 .

5. In the table below, place the numbers 1–12 in the shaded cells. You start at the center cell
(marked with ∗). You repeatedly move up, down, left, or right, chosen uniformly at random each
time, until reaching a shaded cell. Your score is the number in the shaded cell that you end up
at.



Let m be the least possible expected value of your score (based on how you placed the numbers),
and M be the greatest possible expected value of your score. Compute m ·M .

Proposed by Justin Hsieh

Answer. 165
4

Solution. We want to find the probability of ending up at each of the shaded cells. To do this,
we consider states consisting of probabilities placed in each cell. Roughly speaking, each number
represents the probability of “ending up” at that cell.

The initial state is a 1 in the center of the grid:

Given any state, we can change it by clearing any cell containing probability p, and adding p/4
to each orthogonally adjacent cell. This corresponds to taking one step at random. Now we can
update the state so that all probabilities are in the shaded cells:

At this point, we can repeatedly apply the last two steps to see that we are twice as likely to end
up at the center of a shaded 1 × 3 rectangle, than at any other cell. In particular, there is a 1

8
chance of ending up at the center of each shaded 1 × 3 rectangle, and a 1

16 chance of ending up
at each other shaded cell:



The minimum expected score comes from placing 1, 2, 3, 4 in the centers of the shaded rectangles,
giving

1 + 2 + 3 + 4

8
+

5 + 6 + 7 + 8 + 9 + 10 + 11 + 12

16
=

11

2
.

The maximum expected score comes from placing 9, 10, 11, 12 in the centers of the shaded rect-
angles, giving

9 + 10 + 11 + 12

8
+

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8

16
=

15

2
.

The answer is 11
2 · 15

2 = 165
4 .

6. Michael and James are playing a game where they alternate throwing darts at a simplified dart-
board. Each dart throw is worth either 25 points or 50 points. They track the sequence of scores
per throw (which is shared between them), and on the first time the three most recent scores sum
to 125, the person who threw the last dart wins. On each throw, a given player has a 2/3 chance
of getting the score they aim for, and a 1/3 chance of getting the other score. Suppose Michael
goes first, and the first two throws are both 25. If both players use an optimal strategy, what is
the probability Michael wins?

Proposed by Michael Duncan

Answer. 21
46

Solution. At any given point in time, only the last two scores matter. For a, b ∈ {25, 50}, let
pa,b denote the probability that a player wins (playing optimally) given that it’s their turn and
the last two hits were a, then b. Consider first p50,50. If this player hits a 25, they win guaranteed,
and if they hits a 50, they win with probability 1− p50,50. Of course, they’ll go for the 25. So

p50,50 =
2

3
· 1 + 1

3
(1− p50,50)

and thus p50,50 = 3
4 . If the last two hits were 25 and 50, hitting a 50 would give this player a

guaranteed win, so

p25,50 =
2

3
· 1 + 1

3
(1− p50,25).

If the last two hits were 50 and 25, hitting a 50 would once again give a guaranteed win, so

p50,25 =
2

3
· 1 + 1

3
(1− p25,25).



Now, consider the probability p25,25. If the player aims for a 50, then

p25,25 =
2

3
(1− p25,50) +

1

3
(1− p25,25) = 1− p25,25 + p25,50

3
− p25,50

3

while if they aim for a 25 then

p25,25 =
2

3
(1− p25,25) +

1

3
(1− p25,50) = 1− p25,25 + p25,50

3
− p25,25

3
.

Since the player plays optimally,

p25,25 = 1− p25,25 + p25,50
3

− min{p25,25, p25,50}
3

.

The case p25,50 ≤ p25,25 gives us a system that, when solved, yields a contradiction.

So p25,50 > p25,25, and we can easily solve the resulting linear system to find that p5,5 =
21
46 .

Hence Michael wins with probability 21
46 .

7. If S = {s1, s2, . . . , sn} is a set of integers with s1 < s2 < · · · < sn, define

f(S) =
n∑

k=1

(−1)kk2sk.

(If S is empty, f(S) = 0.) Compute the average value of f(S) as S ranges over all subsets of
{12, 22, . . . , 1002}.

Proposed by Connor Gordon and Nairit Sarkar

Answer. 1
4

Solution. Let T = {t1, . . . , tn} be a subset of {22, 32, . . . , 1002}. We can compute

f({1, t1, . . . , tn}) = −1 +

n∑
k=1

(−1)k+1(k + 1)2tk

f({t1, . . . , tn}) =
n∑

k=1

(−1)kk2tk.

Averaging these gives −1
2 −

1
2

∑n
k=1(−1)k(2k + 1)tk. It then suffices to average this over all such

subsets T .

Iterating this process, let U = {u1, . . . , un} be a subset of {32, 42, . . . , 1002}. Plugging in
{22, u1, . . . , un} and U gives

− 1

2
− 1

2

(
−12 +

n∑
k=1

(−1)k+1(2(k + 1) + 1)uk

)

− 1

2
− 1

2

(
n∑

k=1

(−1)k(2k + 1)uk

)
.



Averaging these gives −1
2 − 1

2(−6 −
∑n

k=1(−1)kuk) = 5
2 + 1

2

∑n
k=1(−1)kuk. It then suffices to

average this over all such subsets U .

One last time, let V = {v1, . . . , vn} be a subset of {42, . . . , 1002}. Plugging in {32, v1, . . . , vn} and
V gives

5

2
+

1

2

(
−9 +

n∑
k=1

(−1)k+1uk

)
5

2
+

1

2

(
n∑

k=1

(−1)kuk

)
.

Averaging these gives 5
2 + 1

2(−
9
2) =

1
4 , and averaging over all possible subsets V still gives 1

4 .

8. Six assassins, numbered 1-6, stand in a circle. Each assassin is randomly assigned a target such
that each assassin has a different target and no assassin is their own target. In increasing numerical
order, each assassin, if they are still alive, kills their target. Find the expected number of assassins
still alive at the end of this process.

Proposed by Allen Yang

Answer. 123
53

Solution.

The assignment of targets is a permutation f of the numbers 1-6 such that f(n) ̸= n for all n
(this is known as a derangement of six elements). It’s well-known that every permutation can be
decomposed into disjoint cycles, and it’s clear to see that different cycles have no impact on each
other with respect to assassin survival (namely, all kills/targets occur within a given cycle). We
thus consider the possibilities for the ”cycle types” of such permutations.

Since f(n) ̸= n for all n, we cannot have cycles of length 1. Thus we are interested in the ways
to write 6 as a sum of positive integer greater than 1, which are 2 + 2 + 2, 2 + 4, 3 + 3, and 6.
Now we count the number of each type of permutation.

For three 2-cycles, there are five options for which number gets paired with 1, three options for
which number gets paired with the next smallest available number, and then the last pair is fixed.
This gives 15 options in total.

For two 3-cycles, there are
(
5
2

)
= 10 options for which two numbers go with 1, and then the other

trio is fixed. There are then two ways to order each of the 3-cycles, for a total of 22 · 10 = 40
options.

For a 2-cycle and a 4-cycle, there are
(
6
2

)
= 15 options for which two numbers form the pair, and

then 4!
4 = 6 ways to orient the numbers in the 4-cycle, for a total of 6 · 15 = 90 options.

Finally, for a 6-cycle, there are 6!
6 = 120 ways to orient the numbers in the 6-cycle.

This gives a total of 15+40+90+120 = 265 derangements, which is consistent with the formula
for derangements (265 = 6!( 1

0! −
1
1! +

1
2! − · · ·+ 1

6!)).

Now, we compute the expected survival numbers for each cycle type. We orient the cycles such
that the smallest number in the cycle is first.



For a 2-cycle (a, b), a kills b and then survives, so there is one survivor, and thus the three 2-cycle
case has three survivors.

For a 3-cycle (a, b, c), a kills b before b can kill c (by the assumption that a is smallest), so c lives
and then goes on to kill a, so there is also one survivor, and thus the two 3-cycle case has two
survivors.

For a 4-cycle (a, b, c, d), a kills b before b can kill c, so c lives and eventually goes on to kill d.
However, depending on which of c or d comes first (either occurs with probability 1

2 by symmetry),
d may kill a before getting killed, so we have either one or two survivors with 1

2 probability each,
for an expected 3

2 survivors. Therefore, the expected number of survivors in the one 2-cycle and
one 4-cycle case is 5

2 .

The 6-cycle case (a, b, c, d, e, f) requires more involved casework. We split into the following five
cases, which are mutually exclusive and span all possibilities.

Case 1: c < d and e < f (probability 1
4). In this case, b dies immediately so c lives, d dies before

killing e so e lives, and f dies before killing a so a lives, leading to three survivors (a, c, and e).

Case 2: c < d and e > f (probability 1
4). In this case, b dies immediately so c lives, d dies before

killing e so e lives, and f kills a before getting killed by e, so there are two survivors (c and e).

Case 3: c > d and d < e (probability 1
3). In this case, b dies immediately, so c lives, d kills e

before c kills them or e kills f , and then f kills a, leading to two survivors (c and f).

Case 4: c > d > e and e < f (probability 1
8). In this case, b dies immediately, so c lives, e kills f

before they can kill a, then d and c kill e and d respectively, for two survivors (a and c).

Case 5: c > d > e > f (probability 1
24). In this case, everybody except b gets their kill off, so

there is only one survivor (c).

This means that the case of a 6-cycle has an expected value of 1
4(3)+

1
24(1)+

17
24(2) =

53
24 survivors.

Putting all of this together, we get an expected number of

15(3) + 40(2) + 90(52) + 120(5324)

265
=

615

265
=

123

53
.

9. Let S denote {1, . . . , 100}, and let f be a permutation of S such that for all x ∈ S, f(x) ̸= x.
Over all such f , find the maximum number of elements j that satisfy f(. . . (f(j)) . . . )︸ ︷︷ ︸

j times

= j.

Proposed by Hari Desikan

Answer. 80

Solution. Let an integer z ∈ {1, 2, . . . , 100} work iff f q(q) = q. First, note that for z to work
z must be in a cycle of length that divides z. Note that given any construction with a cycle of
composite length c, we can replace that one cycle with cycles of length p where p | c and still have
all numbers that worked in the initial cycle work in the new cycle. We will therefore only allow
for cycles of prime lengths, as any construction with cycles of composite lengths can be at least
matched in number of working elements with a construction with cycles of only prime lengths.



we show that 80 numbers can work. Let [a, b, c][d, e] denote that f(a) = b, f(b) = c, f(c) =
a, f(d) = e, f(e) = d. We will separate cycles by brackets and f when evaluated at an element
in a bracket yields the next element in the bracket (with wraparound.) Let pi be the ith prime,
with p7 = 17 and p25 = 97.

[13,26,39,52,75,88, p7, p8, p9, p10, p11, p12, p13 ] [11, 22, 33, . . . , 99, p14, p15], [7 · 1, . . . , 7 · 7], [7 · 8,
7 · 9, 7 · 10, 7 · 12, 7 · 13, p16] [5, 10, 15, 20, 25] [30, 40, 45, 50, 60] [70, 75, 80, 85, 90]
The idea behind this construction C is as follows: We get every composite number and every
prime less than 17 to satisfy the property. We call a number n ”satisfied” given a (possibly
implicit) construction if fn(n) = n.

Then for there to be a ”better” construction, some unsatisfied number in this construction must
satisfy the construction. Additionally, a better construction would see at least 81 numbers satis-
fied.

Suppose p > 23 satisfied the property. There are at most 3 multiples of p less than 100, so the
rest of the numbers in the p-cycle satisfying p must be numbers that ”otherwise cannot satisfy the
property anyhow.” Note that at least 20 (p− 3) other such numbers must be used, which means
we would have at least 20 numbers not satisfying the property, which means this construction
can be no better than the one given.

Suppose 23 satisfies the property. Then note that from above, no larger prime can satisfy the
property. Also note that 23 requires 19 unsatisfied numbers (23−⌊10023 ⌋). There are 14 unsatisfiable
numbers greater than 23 (and 1 is also unsatisfiable for 15 total,) so we must also include a number
less than 23 in the construction. Then this number is not satisfied. Suppose u ∈ {19, 17, 13, 11, 1}
is not all in the cycle; then note that at least one more element is not satisfied (these numbers
not being in the cycle guarantees that elements not in the cycle are unsatisfied.) But we only
have 4 more ”open spaces” in our cycle, and so one of these elements must not be in the cycle.
Then any such construction cannot work.

We have thus shown that no p ≥ 23 can be satisfied. Now, suppose 19 is satisfied. If 17 is also
satisfied, then this requires too many other terms to be unsatisfied. So 17 is not satisfied, and
thus every prime from 2 to 13 must be satisfied for such a construction to yield a better answer
than before.

Note too that if 19 is not satisfied and 17 is satisfied, then every prime from 2 to 13 must once
again be satisfied.

We now sketch the completion of the full solution at this point as the punchline becomes obvious;
for 17, we need 12 ”helpers”, and for 13 we need at least 6 more. For 11, we need 2 more. So we
need at least 20 helpers, and any case satisfying 17 can do no better than our construction. The
19 case is similar, except you need more helpers (you need at least 22 helpers total.)

10. Suppose 100 people are gathered around at a park, each with an envelope with their name on
it (all their names are distinct). Then, the envelopes are uniformly and randomly permuted
between the people. If N is the number of people who end up with their original envelope, find
the expected value of N5.

Proposed by Michael Duncan

Answer. 52



Solution. Let Xi = 1 if the i-th person receives their own envelope, and 0 otherwise. Then
N = X1 +X2 + · · ·+X100.

By linearity of expectation,

E[N5] = E[(X1 +X2 + · · ·+X100)
5]

= E[(X5
1 + · · ·+X5

100) + 5(X4
1X2 + · · ·+X4

100X99) + 10(X3
1X

2
2 + · · ·+X3

100X
2
99)

+ 20(X3
1X2X3 + · · ·+X3

100X99X98) + 30(X2
1X

2
2X3 + · · ·+X2

100X
2
99X98)

+ 60(X2
1X2X3X4 + · · ·+X2

100X99X98X97) + 120(X1X2X3X4X5 + · · ·+X100X99X98X97X96)]

= 100 · E[X5
1 ] + 5 · 100 · 99 · E[X4

1X2] + 10 · 100 · 99 · E[X3
1X

2
2 ] + 20 ·

(
100

3

)
· 3 · E[X3

1X2X3]

+ 30 ·
(
100

3

)
· 3 · E[X2

1X
2
2X3] + 60 ·

(
100

4

)
· 4 · E[X2

1X2X3X4] + 120 ·
(
100

5

)
· E[X1X2X3X4X5]

= 100 · P (X1 = 1) + 15 · 100 · 99 · P (X1 = X2 = 1) + 50 ·
(
100

3

)
· 3 · P (X1 = X2 = X3 = 1)

+ 60 ·
(
100

4

)
· 4 · P (X1 = X2 = X3 = X4 = 1) + 120 ·

(
100

5

)
· P (X1 = X2 = X3 = X4 = X5 = 1)

= 100 · 99!

100!
+ 15 · 100 · 99 · 98!

100!
+ 50 ·

(
100

3

)
· 3 · 97!

100!
+ 60 ·

(
100

4

)
· 4 · 96!

100!
+ 120 ·

(
100

5

)
· 95!

100!

= 1 + 15 + 25 + 10 + 1

= 52 .

Alternate solution. There is a somewhat motivated solution using Burnside’s Lemma:

Suppose we have n people at the park instead. Consider the group action Sn ↷ [n], defined in
the obvious way (function application). Then by Burnside’s lemma, the average number of fixed
points out of all permutations is simply the number of orbits of this action, which is just 1, since
given any point in [n], it can be mapped to any other point via some permutation. Another way
to express this is, if we let χ(σ) denote the number of fixed points of a permutation σ under this
group action, we have the number of orbits is equal to

1

|Sn|
∑
σ∈Sn

χ(σ) =
1

n!

∑
σ∈Sn

χ(σ)

However, what if we considered the diagonal group action Sn ↷ [n]5? This group action is defined
by applying the permutation to each element in the 5 tuple. Let ψ(σ) denote the number of fixed
points under this group action of a given σ. Then, by burnside’s lemma, the number of orbits of
this action is equal to

1

|Sn|
∑
σ∈Sn

ψ(σ) =
1

n!

∑
σ∈Sn

ψ(σ)

Now, what does it mean for something to be a fixed point on σ under this group action? It must
be some element (x1, x2, . . . x5) ∈ [n]5 such that σ(xi) = xi for each element xi. But we can
directly count all the ways to construct such an element, it’s just χ(σ)5, since for each coordinate
we choose a fixed point of σ! Then we have that the number of orbits of this action is equal to
the sum

1

n!

∑
σ∈Sn

χ(σ)5



But this is exactly E[N5]. All that is left to do is to count the orbits, which is actually the
annoying part. It is not hard to see that the number of orbits is equal to the number of ways to
partition 5 coordinates into groups whose values are equal, and distinct among different groups.
For example, if we were working over Sn ↷ [n]3, the number of orbits is equal to 5, since we look
at the places where we can map the elements (1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (1, 2, 3). Each of
these elements forms a distinct orbit. (It’s kind of hard to explain in words what I’m trying to
say but working through this example should make it clear). This gets really annoying to count
by hand but you can notice a nice recursion: Let Ok be the number of orbits of Sn ↷ [n]k. Then
we have that

Ok =
k−1∑
i=0

(
k − 1

i

)
Oi

The motivation for this being, given a possible partition of the coordinates, removing the group
containing the first coordinate will always yield a smaller set of coordinates, which are partitioned.
After removing the group containing the first coordinate, the number of elements remaining can
range from 0 to k − 1, and for each of these 0 ≤ i ≤ k − 1 possibilities there are

(
k−1
i

)
ways to

position them. Then for each position, there are Oi partitions. (This recursion was based off of
the wiki page for Bell Numbers).

Then we just need to solve for O5, which is 52 .

11. (Tiebreaker) An integer X1 is uniformly randomly chosen from 0 to 100 inclusive. Then another
integer X2 is uniformly randomly chosen from 0 to X1 inclusive, then X3 from 0 to X2 inclusive,
and so on. Estimate the probability thatX5 is nonzero. Express your answer in the form 0.abcdef .

Proposed by Connor Gordon

Answer. 0.563068

Solution. Let pk,n be the probability that Xn = k. Then

pk,n+1 =

100∑
i=k

pi,n
i+ 1

.

Starting with p0,0 = · · · = p99,0 = 0 and p100,0 = 1, we compute 1− p0,5 ≈ 0.563068.


