
Algebra and Number Theory Round Solutions

1. Connor is thinking of a two-digit number n, which satisfies the following properties:

• If n > 70, then n is a perfect square.

• If n > 40, then n is prime.

• If n < 80, then the sum of the digits of n is 14.

What is Connor’s number?

Proposed by Connor Gordon

Answer. 59

Solution. Note that if n > 70, then n > 40 as well, so n is both prime and a perfect square,
which is nonsense. So n ≤ 70. Thus n < 80, so the sum of the digits of n is 14. This means both
digits of n must be at least 5, so n > 40 and thus n is prime. The only 40 < n ≤ 70 with digits
summing to 14 are 59 and 68, of which 59 is prime.

2. Suppose P (x) = x2 + Ax + B for real A and B. If the sum of the roots of P (2x) is 1
2 and the

product of the roots of P (3x) is 1
3 , find A+B.

Proposed by Connor Gordon

Answer. 2

Solution. Suppose the roots of P (x) are r and s. Then the roots of P (2x) are r
2 and s

2 , so
r
2 + s

2 = 1
2 → r + s = 1. The roots of P (3x) are r

3 and s
3 , so

r
3 · s

3 = 1
3 → rs = 3.

Then we can write P (x) = (x− r)(x− s) = x2 − (r + s)x+ rs = x2 − x+ 3, so A+B = 2 .

3. The positive integer 8833 has the property that 8833 = 882 + 332. Find the (unique) other four-
digit positive integer abcd where abcd = (ab)2 + (cd)2.

Proposed by Allen Yang

Answer. 1233

Solution. Letting ab = x and cd = y, we get the equation x2 + y2 = 100x+ y, or (x− 50)2 =
−y2 + y + 2500. We’re given that (88, 33) is a solution to this equation. Note that if we change
the sign of x − 50 while keeping y constant, we get another solution to this equation. Thus we
want x− 50 = −(88− 50) = −38 → x = 12, so 1233 is our answer.



4. For positive integer n, let f(n) be the largest integer k such that k! ≤ n, let g(n) = n− (f(n))!,
and for j ≥ 1 let

gj(n) = g(. . . (g(n)) . . . )︸ ︷︷ ︸
j times

.

Find the smallest positive integer n such that gj(n) > 0 for all j < 30 and g30(n) = 0.

Proposed by Connor Gordon

Answer. 120959

Solution. This is equivalent to finding the smallest n such that its factorial base representation
has digits that sum to 30. This occurs when the representation is 27654321, which corresponds
to 3 · 8!− 1 = 120959 .

5. Let
f(x) = (x+ 1)6 + (x− 1)5 + (x+ 1)4 + (x− 1)3 + (x+ 1)2 + (x− 1)1 + 1.

Find the remainder when
∑126

j=−126 jf(j) is divided by 1000.

Proposed by Hari Desikan

Answer. 626

Solution. Note that for any j ≥ 1,

jf(j) + (−j)f(−j) = j[(j + 1)6 + (j − 1)5 + (j + 1)4 + · · ·+ (j − 1) + 1

− (−j + 1)6 − (−j − 1)5 − (−j + 1)4 − · · · − (−j − 1) + 1]

= j[(j + 1)6 + (j − 1)5 + (j + 1)4 + · · ·+ (j − 1) + 1

− (j − 1)6 + (j + 1)5 − (j − 1)4 − · · ·+ (j + 1) + 1].

Following the “zig-zags” gives two geometric series, and summing gives

j

[
1− (j + 1)7

1− (j + 1)
+

1− (−(j − 1))7

1− (−(j − 1))

]
= (j + 1)7 − (j − 1)7 − 2.

Summing this from j = 1 to j = 126, we telescope down to 1277+1267− 1− 252. It then suffices
to compute 1277 + 1267 (mod 1000), as we can then subtract 253.

To do this, we use the Chinese remainder theorem. Mod 8, this expression looks like (−1)7 +
(−2)7 ≡ −1, and mod 125, this expression looks like 27 + 17 ≡ 4 mod 125. We want −1 ≡ 7
mod 8, and note that subtracting 125 gives us this, so our 1277 + 1267 ≡ −121 ≡ 879 mod 1000.
Subtracting 253 gives 626 .

6. Integers a, b satisfy the following property: the line y = 2x + ab passes through all intersection
points of the two parabolas given by

y = x2 + 2x+ a, y = 2x2 + bx,



which intersect at least once. How many such (a, b) satisfy |ab| ≤ 100?

Proposed by Justin Hsieh

Answer. 52

Solution. The x-coordinates of the intersections of the parabolas will satisfy

x2 + 2x+ a = 2x2 + bx,

with solutions

x =
2− b±

√
(2− b)2 + 4a

2
.

Since the parabolas intersect at least once, we have (2 − b)2 + 4a ≥ 0. Now considering the line
y = 2x+ ab, we have

y = 2x+ ab = x2 + 2x+ a

at both possible values for x. In particular,

ab− a = x2 =
(2− b)2 + (2− b)2 + 4a± 2(2− b)

√
(2− b)2 + 4a

4

for both values given by the ±. Rearrange to get

−4a(2− b) = 2(2− b)
(
(2− b)±

√
(2− b)2 + 4a

)
.

If b = 2, then both sides of the equation are equal to 0. This means (a, 2) is a valid solution, as
long as (2− b)2 + 4a = 4a ≥ 0. Otherwise, divide by 2(2− b) and rearrange:

−2a− 2 + b = ±
√
(2− b)2 + 4a.

Since the left side of this equation can only take one value, we must have (2− b)2+4a = 0, which
in turn makes our equation b = 2a + 2. Substitute b = 2a + 2 into (2 − b)2 + 4a = 0 to get
4a2 + 4a = 0, which makes (a, b) = (0, 2) (already counted) or (a, b) = (−1, 0).

Therefore the solutions are (−1, 0) and (a, 2) with a ≥ 0. If |ab| ≤ 100, then we can take a up to
50 in (a, 2). This gives us a total of 52 solutions.

7. Let x0, x1, x2, and x3 be complex numbers forming a square centered at 0 in the complex plane
with side length 2. For each 0 ≤ k ≤ 3, there are four more complex numbers z4k, z4k+1, z4k+2,
and z4k+3 forming a square centered at xk with side length

√
2. Given that

∏15
i=0 zi is a positive

integer, how many possible values could it take?

Proposed by Hari Desikan

Answer. 545

Solution. Let xk=ei(θ+
kπ
2
) for k = 0, 1, 2, 3 and with θ < π

2 . Let the quadrants include the

half-axes directly clockwise, and let xi be in the i + 1th quadrant. Let z4k+j = xk + s′ei(αk+j π
2
)

with αk an angle in the first quadrant, for k, j ∈ {0, 1, 2, 3}. This means that from the origin, we
first add xk and then add a vector of the desired length and orientation to arrive at values of z



such that values of z are π
2 apart with respect to their respective values of x. Note additionally

that s′ = 1√
2
as s′ is the half diagonal of the square of side-length 1.

We will find the product of z0, z1, z2, z3 and proceed from there. This is the k = 0 case and has
xk in the first quadrant. Generally, we let ω = 4k + j. Then,

3∏
i=0

zi =
3∏

j=0

(x0 + s′ei(α0+j π
2
)) =

3∏
j=0

(x0 − s′ei(α0+j π
2
)),

where we have noted that

s′ei(α0+j π
2
) = −s′ei(α0+(j+2 mod 4)π

2
)

and made the change of indices j ≡ j + 2 mod 4.

3∏
j=0

(x0 − s′ei(α0+j π
2
)) =

3∏
j=0

(x0 − s′ei(α0)eij
π
2
)),

which looks remarkably like the product of the roots of unity! In fact, it is a transformation of
the polynomial

3∏
j=0

(x0 − eij
π
2 ) = x40 − 1,

where every root is multiplied by s′eiα0 . Then

3∏
j=0

(x0 − s′ei(α0)eij
π
2 ) =

(( x0
s′eiα0

)4
− 1

)
s′4e4iα0 ,

where we multiply by the second term to keep our polynomial monic while retaining its roots.
The same logic holds for xk : k ̸= 0 - that is,

3∏
j=0

(xk − s′ei(αk)eij
π
2
)) =

3∏
j=0

(x0e
i kπ

2 − s′ei(αk)eij
π
2
)) =

(
x0e

i kπ
2

s′eiαk

)4

− 1 =
( x0
s′eiαk

)4
− 1,

as we can factor out (ei
kπ
2 )4 = e2πki = 1.

We will now re-substitute x0 = eiθ and arrive at

3∏
j=0

(xk − s′ei(αk)eij
π
2
)) =

(
eiθ

s′eiαk

)4

− 1 = 4e4i(θ−αk) − 1,

where we have substituted s′ = 1√
2
.Then

15∏
ω=0

zω =

3∏
k=0

3∏
j=0

zω =
3∏

k=0

4e4i(θ−αk) − 1.

We may pick θ, αk freely in the range [0, π
2 ) and so 4(θ − αk) can be any value in [0, 2π). Let

4(θ − αk) = βk, which can be picked freely. We now consider
3∏

k=0

(4eiβk − 1). This is multiplying



together 4 complex numbers z′0, z
′
1, z

′
2, z

′
3 with the sole restriction that they lie on the circle

with radius 4 and center −1 + 0i in the complex plane. It is plain to see that the minimal
possible magnitude of the product of such values is 81 and the maximal possible magnitude of
the product of such values is 625, and the corresponding cases βk = 0, βk = π ∀k do result in
positive integers. To construct other positive integers in the range [81, 625], simply rotate z′0, z

′
1

about -1+0i some number of radians dr and rotate z′2, z
′
3 −dr radians from an initial position

of z′1 = z′2 = z′3 = z′4 = 3. Then by symmetry the arguments of z1, z2 are the negatives of the
arguments of z3, z4, so the resulting product is still real. However, the magnitude clearly sweeps
out all values from 81 to 625, so all values from 81 to 625 must work - that is, 545 values work.

8. Compute the number of non-negative integers k < 220 such that
(
5k
k

)
is odd.

Proposed by David Tang

Answer. 20736

Solution. By Lucas’s Theorem,
(
5k
k

)
is the same parity as

∏
i

(
5ki
ki

)
where it’s the i-th digit in

binary. Thus, it is odd if and only if there is no
(
0
1

)
.

5 is 1012 in binary. Visualize 5k as 4k + k. If this sum has no carry, then there will be no
(
0
1

)
so it works. If there is a carry, we consider the right-most carry, and that must result in a

(
0
1

)
.

Thus, it suffices to find all binary strings with no substring of 101 or 111.

By casing on whether the first binary digits are 0, 10, 11, we get the recursion that f(n) =
f(n− 1) + f(n− 3) + f(n− 4). We also verify that the initial values are f(0) = 1 = F 2

1 , f(1) =
2 = F1 ∗F2, f(2) = 4 = F 2

2 , f(3) = 6 = F2 ∗F3. We can see that the recursion keeps this pattern.
For example, we can see that f(4) = F2 ∗ F3 + F1 ∗ F2 + F 2

1 = F2 ∗ F3 + F1 ∗ F3 = F 2
3 and

f(5) = F 2
3 + F 2

2 + F1 ∗ F2 = F 2
3 + F3 ∗ F2 = F3 ∗ F4.

Thus, we have that f(20) = F 2
11 = 1442 = 20736 .

Another way to get this is to separate odd and even bits, and we realize that no two consecutive
odd or even bits can be both 1s. The number of ways to do the odd/even bits is Fibonacci, so
our answer is the product of the two Fibonacci terms corresponding with the number of odd bits
plus 1 and the number of even bits plus 1.

9. Let Q≥0 be the non-negative rational numbers, f : Q≥0 → Q≥0 such that f(z + 1) = f(z) + 1,
f(1/z) = f(z) for z ̸= 0, and f(0) = 0. Define a sequence Pn of non-negative integers recursively
via

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2

for every n ≥ 2. Find f
(
P20
P24

)
.

Proposed by Robert Trosten

Answer. 166

Solution. Solving the sequence using the characteristic polynomial, we see that there are α, β ∈
R such that

Pn = α(1 +
√
2)n + β(1−

√
2)n



for every n. So
P3n = α(1 +

√
2)3n + β(1−

√
2)3n.

Computing, (1 +
√
2)4 = 17− 12

√
2 and (1−

√
2)4 = 17 + 12

√
2. Their sum is 34 and product is

1, so we deduce the relation
Pn+4 = 34Pn − Pn−4

for every n ≥ 4. Dividing,

Pn+4

Pn
= 34− Pn−4

Pn
= 33 + 1− Pn−4

Pn
.

We claim that f(x) = f(1− x) for all relevant 0 < x < 1. Indeed,

f(1− x) = f

(
1

1− x

)
= 1 + f

(
x

1− x

)
= 1 + f

(
1− x

x

)
= f(1/x) = f(x).

From this lemma (and easy induction) we see that

f

(
Pn+4

Pn

)
= 33 + f

(
1− Pn−4

Pn

)
= 33 + f

(
Pn−4

Pn

)
,

so that (assuming n ̸= 0, so f(z) = f(1/z)) we have

f

(
Pn+4

Pn

)
= 33 + f

(
Pn

Pn−4

)
.

Running this down (being careful not to trip at the end),

f(P24/P20) = 33 · 4 + f(P8/P4) = 33 · 4 + 34− 0 = 166

as desired.

10. There exists a unique pair of polynomials (P (x), Q(x)) such that

P (Q(x)) = P (x)(x2 − 6x+ 7)

Q(P (x)) = Q(x)(x2 − 3x− 2)

Compute P (10) +Q(−10).

Proposed by Connor Gordon

Answer. −90

Solution. Let dP and dQ be the degrees of P and Q respectively. The given equations imply
that dPdQ = dP + 2 = dQ + 2 → dP = dQ = 2, so P and Q are quadratic.



Now let the leading coefficients of P and Q be LP and LQ respectively. The given equations
imply that LPL

2
Q = LP and LQL

2
P = LQ, which imply that LP , LQ = ±1 since LP , LQ ̸= 0.

Now let the sum of the roots of P and Q be SP and SQ respectively. Suppose the roots of P are
r and s. Then P (Q(x)) = 0 precisely when Q(x) = r or Q(x) = s. These each have sum of roots
SQ (By Vieta, any polynomial R(x) of degree at least 2 satisfies the property that the sum of the
roots of R(x)− c is the same as the sum of the roots of R(x)), so the sum of the roots of P (Q(x))
is 2SQ. Applying this reasoning to the given equations gives 2SQ = SP + 6 and 2SP = SQ + 3.
Solving this system gives SP = 4 and SQ = 5.

So now (by some more Vieta) (P (x), Q(x)) is either of the form (±(x2 − 4x)+ a,±(x2 − 5x)+ b),
where the ±’s are independent (so there are four “classes” of solutions).

Next, note that Q is symmetric around x = 5
2 , so P (Q(0)) = P (Q(5)). Equating the right-hand

sides gives P (0) · 7 = P (5) · 2, or 7a = 2(±5 + a), so a = ±2.

Similarly, P is symmetric around x = 2, so Q(P (0)) = Q(P (4)). Equating the right-hand sides
gives Q(0) · (−2) = Q(4) · 2, or −b = ∓4 + b, so b = ±2.

This narrows us down to (P (x), Q(x)) is (±(x2 − 4x + 2),±(x2 − 5x + 2)). To figure out which
combination of signs works, we plug in 0 and see if the equations work. We first compute
P (0) = ±2 and Q(0) = ±2, then P (±2) = 6∓ 8 and Q(±2) = 6∓ 10.

Note that these are all integers, and the RHS of the first equation is divisible by 7. This means
7 | P (Q(0)), so P (Q(0)) = 14 and thus Q(0) = −2. This means P has positive leading coefficient
while Q has negative leading coefficient. This narrows down to only one possibility: P (x) =
x2 − 4x+ 2 and Q(x) = −x2 + 5x− 2, which one can see does in fact work for all x. This gives
P (10) +Q(−10) = −90 .

11. For 0 ≤ x ≤ 2π, f(x) = 1
2 |sin(20x) + cos(24x)| is always strictly between 0 and 1. Estimate the

average value of f over this interval. Express your answer in the form 0.abcdef .

Proposed by Connor Gordon

Answer. 0.407759

Solution.


