
Team Round Solutions

1. On a plane, two equilateral triangles (of side length 1) share a side, and a circle is drawn with
the common side as a diameter. Find the area of the set of all points that lie inside exactly one
of these shapes.

Proposed by Howard Halim

Answer. π
12

Solution. We need to calculate the total colored area:

By moving the regions to these positions, we see that they cover a third of the circle:

The circle has radius AB
2 = 1

2 , so its area is π
4 , and the answer is π

12

2. Real numbers x and y satisfy

x2 + y2 = 2023

(x− 2)(y − 2) = 3.

Find the largest possible value of |x− y|.

Proposed by Howard Halim

Answer.
√
2197

Solution. Note it suffices to minimize (x− y)2 = (x+ y)2− 4xy. Letting s = x+ y and p = xy,
the given equations rearrange to s2 − 2p = 2023 and p − 2s = −1. Substituting p = 2s − 1 into



the first equation gives s2 − 4s = 2021 → (s − 2)2 = 2025 → s = −43, 47. These correspond to
p = −87 and p = 93 respectively.

We wish to minimize s2− 4p. We compute (−43)2− 4(−87) = 2197 and 472− 4(93) = 1837. The

larger of these is 2197, yielding an answer of
√
2197 .

3. Find the number of ordered triples of positive integers (a, b, c), where 1 ≤ a, b, c ≤ 10, with the
property that gcd(a, b), gcd(a, c), and gcd(b, c) are all pairwise relatively prime.

Proposed by Kyle Lee

Answer. 841

Solution. Let a = 2a1 · 3a2 · · · , b = 2b1 · 3b2 · · · , and c = 2c1 · 3c2 · · · . By the definition fo the
gcd, the condition on the exponents of the factors of 2 is equivalent to

min(min(a1, b1),min(b1, c1)) = 0

min(min(a1, b1),min(a1, c1)) = 0

min(min(a1, c1),min(b1, c1)) = 0,

which implies at least one of a1, b1, c1 must be 0. Consider the complement; that is, when none
of the exponents on the factors of 2 are 0. Since there are 5 multiples of 2, 3 multiples of 3, 2
multiples of 5, and 1 multiple of 7 in the given range, we have an initial count of 53+33+23+13

such triples. However, we overcount the two triples (2 · 3, 2 · 3, 2 · 3) and (2 · 5, 2 · 5, 2 · 5), so there
are actually 53 + 33 + 23 + 13 − 2 = 159 ordered triples. Since this is the complement, it follows
that the desired answer is 103 − 159 = 841 .

4. Suppose a1, a2, a3, . . . , is a sequence of real numbers such that

an =
an−1an−2

3an−2 − 2an−1

for all n ≥ 3. If a1 = 1 and a10 = 10, what is a19?

Proposed by Howard Halim

Answer. − 10
4607

Solution. We can rewrite the equation as

an =
1

3
an−1

− 2
an−2

⇐⇒ 1

an
=

3

an−1
− 2

an−2
⇐⇒ 1

an
− 1

an−1
= 2

(
1

an−1
− 1

an−2

)

Let d = 1
a2

− 1
a1
, then we have

1

a10
− 1

a1
= (29 − 1)d =⇒ d = − 9

10(29 − 1)



and
1

a19
− 1

a1
= (218 − 1)d =⇒ a19 = − 10

4607

5. 1296 CMU Students sit in a circle. Every pair of adjacent students rolls a standard six-sided die,
and the ‘score’ of any individual student is the sum of their two dice rolls. A ‘matched pair’ of
students is an (unordered) pair of distinct students with the same score. What is the expected
value of the number of matched pairs of students?

Proposed by Dilhan Salgado

Answer. 94605

Solution. Let n = 1296.

There are n adjacent pairs of students. Each adjacent pair will be matched iff their other dice roll
is the same, which happens with probability 1

6 . Thus the expected number of matched adjacent
pairs is n

6 .

There are n(n−3)
2 non-adjacent pairs of students. Each non-adjacent pair’s scores are completely

independent. Thus, the probability of them having the same score is:

1 · 1 + 2 · 2 + ...+ 5 · 5 + 6 · 6 + 5 · 5 + ...+ 1 · 1
64

Computing this out we get 1+4+9+16+25+36+25+16+9+4+1
1296 = 55+91

1296 = 146
1296 . This means the expected

number of non-adjacent matched pairs is 73n(n−3)
1296 .

Adding these up, we get that the expected value of total matched pairs is:

1296

6
+

73 · 1293 · 1296
1296

= 216 + 73 · 1293 = 94605

6. A positive integer n is said to be base-able if there exists positive integers a and b, with b > 1,
such that n = ab. How many positive integer divisors of 729000000 are base-able?

Proposed by Kyle Lee

Answer. 90

Solution. Note that 729000000 = 306 = 26 · 36 · 56. First, observe that 1 is trivially base-able
as 1b works for any b > 1. Now, we case on the value of b. Clearly, 2 ≤ b ≤ 6. If b = 2, then
just focusing on the factors of 2 in a, we can have either 20, 21, 22, or 23. Hence, across all prime
factors, we have 43 − 1 possibilities, where we subtract 1 for the case when n = 1. If b = 3, then
again focusing on the factors of 2 in a, we can have either 20, 21, or 22, for 33 − 1 possibilities.
For b = 4, 5, and 6, we can only have 20 or 21, for a total of 23 − 1 possibilities each. Hence, we
have an initial count of

1 + (43 − 1) + (33 − 1) + 3(23 − 1) = 111.



However, some of these values are overcounted. Focusing on just the factors of 2, we can easily
see that 24 = (22)2 and 26 = (22)3 = (23)2 are the only overcounted possibilities. For the first
case, we can simply subtract off 23 − 1 by ignoring when b = 4. However, for the second case, if
we subtract off 23 − 1 by ignoring when b = 6, we still overcount the cases when b = 2 and b = 3.
Hence, we have to subtract 23 − 1 again to account for cases such as (22)3 = (23)2. Hence, the
answer is 111− 3(23 − 1) = 90 .

7. Compute the value of

sin2
(π
7

)
+ sin2

(
3π

7

)
+ sin2

(
5π

7

)
.

Your answer should not involve any trigonometric functions.

Proposed by Howard Halim

Answer. 7
4

Solution. First note sin2(5π7 ) = sin2(2π7 ). Now define

S = sin2
(π
7

)
+ sin2

(
3π

7

)
+ sin2

(
5π

7

)
C = cos2

(π
7

)
+ cos2

(
3π

7

)
+ cos2

(
5π

7

)
We can easily compute C + S = 3 by the identity sin2(θ) + cos2(θ) = 1, and C − S = cos(2π7 ) +
cos(4π7 ) + cos

(
6π
7

)
by the identity cos2(θ)− sin2(θ) = cos(2θ). It remains to compute this latter

value. Letting ω = e2π/7 (a seventh root of unity), we have

cos

(
2π

7

)
+ cos

(
4π

7

)
+ cos

(
6π

7

)
=

1

2
(ω + ω−1) +

1

2
(ω2 + ω−2) +

1

2
(ω3 + ω−3)

=
1

2
(ω + ω6 + ω2 + ω5 + ω3 + ω4).

Recalling that ω is a root of x6 + x5 + x4 + x3 + x2 + x+ 1 = 0, we see that this is simply equal

to −1
2 . Solving the system C + S = 3, C − S = −1

2 yields S = 7
4 .

8. NASA is launching a spaceship at the south pole, but a sudden earthquake shock caused the
spaceship to be launched at an angle of θ from vertical (0 < θ < 90◦). The spaceship crashed
back to Earth, and NASA found the debris floating in the ocean in the northern hemisphere.
NASA engineers concluded that tan θ > M , where M is maximal. Find M .

Assume that the Earth is a sphere, and the trajectory of the spaceship (in the reference frame of
Earth) is an ellipse with the center of the Earth one of the foci.

Proposed by Kevin You

Answer.
√
2− 1



Solution. Let O be the center of Earth, F be the second focus, A be the south pole, and B the
location of the debris. The ellipse possesses the property that the normal to the ellipse at A (A is
any point on the ellipse) bisects ∠OAF . Since the normal is perpendicular to the initial velocity
v⃗, and the angle between v⃗ and OA is θ, we can conclude that ∠OAF = 180◦ − 2θ.

Since OA = OB, the situation is symmetric, and we also have ∠OBF = 180◦. Finally, we know
that ∠AOB > 90◦. The three relations combined gives 4θ > 90◦ + ∠AFB. By taking F to be

very far away, we have that ∠AFB → 0◦, and so θ > 22.5◦ is tight. This gives M =
√
2− 1 .

9. A positive integer N is a triple-double if there exists non-negative integers a, b, c such that
2a + 2b + 2c = N . How many three-digit numbers are triple-doubles?

Proposed by Giacomo Rizzo

Answer. 115

Solution. The set of triple-doubles is the set of positive integers greater than 2 whose binary
representation contains at most three ones. Since the binary representation of a three-digit triple-
double is between 10010 = 11001002 and 99910 = 11111001112 inclusive, it must have between 7
and 10 binary digits. There are

(
10
3

)
+
(
10
2

)
+
(
10
1

)
+
(
10
0

)
= 176 ways to select at most three binary

digits to be ones, and
(
7
3

)
+
(
7
2

)
+
(
7
1

)
+
(
7
0

)
= 64 such combinations produce a number with seven

or fewer binary digits. Since 11001002, 11010002, and 11100002 are the only valid seven-digit
binary representations, our answer is 176− 64 + 3 = 115 .

10. Consider the set of all permutations, P, of {1, 2, . . . , 2022}. For permutation P ∈ P, let P1 denote
the first element in P . Let sgn(P ) denote the sign of the permutation. Compute the following
number modulo 1000: ∑

P∈P

P1 · sgn(P )P1

2020!
.

(The sign of a permutation P is (−1)k, where k is the minimum number of two-element swaps
needed to reach that permutation).

Proposed by Nairit Sarkar

Answer. 772

Solution. Take 2020! out of sum and divide at end. Casework on P1 odd or even.

Assume P1 odd for the first case. We wish to compute∑
P∈P

P1 · sgn(P ).

Let S be the set of permutations with P1 = i for odd i. Swapping the second and third elements
yields a bijection between the odd and even elements in S. Therefore, this sum is 0.



Assume P1 even. Then, we wish to compute∑
P∈P

P1.

There are (n−1)! permutations starting with each even integer from 2 to 2022 inclusive. Therefore,
our answer is 1011 · 1012 · 2021!. Dividing by 2020! gives 1011 · 1012 · 2021. We see that is 772
modulo 1000.

11. A positive integer is detestable if the sum of its digits is a multiple of 11. How many positive
integers below 10000 are detestable?

Proposed by Giacomo Rizzo

Answer. 908

Solution. All detestable positive integers below 10000 can be written in the form x = abcd
(where a, b, c, d are nonnegative digits), so we wish to find all such (a, b, c, d) satisfying a+b+c+d ̸=
0 and a+b+c+d ≡ 0 (mod 11). Since 0 < a+b+c+d ≤ 36, there are three cases for a+b+c+d.

Case 1: a + b + c + d = 11. By balls and boxes counting, there are
(
11+4−1
4−1

)
= 364 nonnegative

solutions. However, since a, b, c, d are digits, they cannot be greater than 9. If one box has 10 or
more balls, there are 4 ways to select the box and

(
1+4−1
4−1

)
ways to distribute the remaining ball

across 4 boxes, for a total of 16 ways. So, there are 364− 16 = 348 solutions.

Case 2: a+ b+ c+ d = 22. By balls and boxes counting, there are
(
22+4−1
4−1

)
= 2300 nonnegative

solutions. Once again, we need to subtract invalid solutions. If one box has 10 or more balls,
there are 4 ways to select the box and

(
12+4−1
4−1

)
= 455 ways to distribute the remaining 12 balls

across 4 boxes, for a total of 1820 ways. But per PIE, we need to add back the solutions where
2 boxes have 10 or more balls. There are

(
4
2

)
= 6 ways to select the boxes and

(
2+4−1
4−1

)
= 10

ways to distribute the remaining 2 balls across 4 boxes, for a total of 60 ways. So, there are
2300− 1820 + 60 = 540 solutions.

Case 3: a+ b+ c+ d = 33. There are not many possibilities that a, b, c, d can be, as they cannot
be greater than 9. Listing them out, we get (a, b, c, d) = (9, 9, 9, 6), (9, 9, 8, 7), (9, 8, 8, 8) and their
reorderings, for a total of 4 + 12 + 4 = 20 solutions.

It follows from our casework that there are 348 + 540 + 20 = 908 detestable positive integers
below 10000.

12. Let ABC be an acute triangle with circumcircle ω. Let D and E be the feet of the altitudes from
B and C onto sides AC and AB, respectively. Lines BD and CE intersect ω again at points
P ̸= B and Q ̸= C. Suppose that PD = 3, QE = 2, and AP ∥ BC. Compute DE.

Proposed by Kyle Lee

Answer.
√
2 +

√
7

Solution. First, note that the reflection of P and Q across AC and AB coincide at H =
BD ∩ CE, the orthocenter of ABC. Hence, HD = 3 and HE = 2. Now, since AP ∥ BC, it



follows that APCB is an isosceles trapezoid, so BD = CD. Hence, ∠ACB = 45◦, which implies
∠HAD = 45◦. Therefore, AD = 3 and AH = 3

√
2. By the Pythagorean Theorem, it follows that

AE2 = (3
√
2)2−22, so AE =

√
14. Lastly, since ∠AEH+∠ADH = 180◦, it follows that ADHE

is cyclic, so by Ptolemy’s theorem, we have 2(3) + 3(
√
14) = (DE)(3

√
2), so DE =

√
2 +

√
7 .

13. Suppose that the sequence of real numbers a1, a2, . . . satisfies a1 = −
√
1, a2 =

√
2, and for all

k > 1,
ak+1 + ak−1

ak
=

√
3 +

√
1√

2
.

Find a2023.

Proposed by Kevin You

Answer. 4 + 3
√
3

Solution. With wishful thinking, we may hope that the sequence resembles a geometric se-
quence, since only ratios are involved. Take ak = eαk. We get

ekα+α + ekα−α

ekα
= eα + e−α =

√
3 +

√
1√

2
.

Unfortunately, this is not solvable in real numbers for α. However, if we allow complex numbers,
then take α = iθ. We have that

eiθ + e−iθ = 2 cos θ =

√
3 +

√
1√

2

We are in luck, as θ = 15◦ is a solution. Let us write the sequence as a trigonometric function.
Both cos(kθ) and sin(kθ) satisfies the given recurrence. Indeed, by sum to product we have

sin((k + 1)θ) + sin((k − 1)θ)

sin(kθ)
=

2 sin(kθ) sin(θ)

sin(kθ)
= 2 sin(θ).

The case for cos is similar. So, we write

ak = A1 cos(kθ) +A2 sin(kθ)

By shifting the sequence by 1 and fitting the initial conditions, we find that

ak = − cos((k − 1)θ) +
(
4 + 3

√
3
)
sin((k − 1)θ)



So, we get

a2023 = 4 + 3
√
3

14. Let ABC be points such that AB = 7, BC = 5, AC = 10, and M be the midpoint of AC. Let
ω, ω1 be the circumcircles of ABC and BMC. Ω, Ω1 are circles through A and M such that
Ω is tangent to ω1 and Ω1 is tangent to the line through the centers of ω1 and Ω. D,E be the
intersection of Ω with ω and Ω1 with ω1. If F is the intersection of the circumcircle of DME
with BM , find FB.

Proposed by David Tang

Answer. 4
√
3

Solution. Invert about M , denote inverted points X by X ′. Then, we find that D′ is the
intersection of the line parallel to B′C ′ through A′ and the circumcircle of A′B′C ′. E′ is the
foot of the perpendicular dropped from A′ to B′C ′. F ′ is the intersection of D′E′ with B′M .
If N is the midpoint of B′C ′, then we notice that D′E′ cuts AN into a ratio of 2 : 1. Thus, it
passes through the centroid of A′B′C ′, so F ′ is the centroid of A′B′C ′ since it is on D′E′ and
the B′-median. Thus, FB/BM = F ′B′/F ′M = 2. Since BM = 2

√
3 from the median length

formula, we get that FB = 4
√
3.

15. Equilateral triangle T0 with side length 3 is on a plane. Given triangle Tn on the plane, triangle
Tn+1 is constructed on the plane by translating Tn by 1 unit, in one of six directions parallel to
one of the sides of Tn. The direction is chosen uniformly at random.

Let a be the least integer such that at most one point on the plane is in or on all of T0, T1, T2, . . . , Ta.
It can be shown that a exists with probability 1. Find the probability that a is even.

Proposed by Justin Hsieh

Answer. 9
22

Solution. This problem uses states and lots of infinite series using the Fibonacci sequence.

After placing Tn, we can be in one of five states. We will name the states S,N ,V, E ,X , based on
the intersection of T0, T1, T2, . . . , Tn, and the placement of that set in relation to Tn. S (“Start”):
the intersection is an equilateral triangle of side length 3, N (“Next”): the intersection is an
equilateral triangle of side length 2, V (“Vertex”): the intersection is an equilateral triangle of
side length 1, adjacent to two sides of Tn, E (“Edge”): the intersection is an equilateral triangle
of side length 1, adjacent to one side of Tn, X : the intersection is a single point.

We may move to a different state after placing Tn+1, given Tn. We start at S, and move to N
with probability 1. At N , there is a 1

3 chance of staying at N , a 1
3 chance of moving to V, and

a 1
3 chance of moving to E . At V, there is a 1

3 chance of moving to E , and a 2
3 chance of moving

to X . At E , there is a 1
3 chance of staying at E , a 1

3 chance of moving to V, and a 1
3 chance of

moving to X .



If we define Os to be the probability of taking an odd number of steps to reach the end from state
s, we have OX = 0, OV = 9/11, OE = 6/11, ON = 9/22. Since we get to state N in 1 step, the

answer is the odd probability of state N which is 9/22 .


