2023

Team Round

Instructions

- 1. Do not look at the test before the proctor starts the round.
- 2. This test consists of 15 short-answer problems to be solved in 60 minutes.
- 3. No computational aids other than pencil/pen are permitted.
- 4. Write your team name on your answer sheet.
- 5. Write your answers in the corresponding lines on your answer sheet.
- 6. Answers must be reasonably simplified.
- 7. If you believe that the test contains an error, submit your protest to the 2023 CMIMC discord.

CMIMD 2023

Team

- 1. On a plane, two equilateral triangles (of side length 1) share a side, and a circle is drawn with the common side as a diameter. Find the area of the set of all points that lie inside exactly one of these shapes.
- 2. Real numbers x and y satisfy

$$x^{2} + y^{2} = 2023$$
$$(x-2)(y-2) = 3.$$

Find the largest possible value of |x - y|.

- 3. Find the number of ordered triples of positive integers (a, b, c), where $1 \le a, b, c \le 10$, with the property that gcd(a, b), gcd(a, c), and gcd(b, c) are all pairwise relatively prime.
- 4. Suppose a_1, a_2, a_3, \ldots , is a sequence of real numbers such that

$$a_n = \frac{a_{n-1}a_{n-2}}{3a_{n-2} - 2a_{n-1}}$$

for all $n \ge 3$. If $a_1 = 1$ and $a_{10} = 10$, what is a_{19} ?

- 5. 1296 CMU Students sit in a circle. Every pair of adjacent students rolls a standard six-sided die, and the 'score' of any individual student is the sum of their two dice rolls. A 'matched pair' of students is an (unordered) pair of distinct students with the same score. What is the expected value of the number of matched pairs of students?
- 6. A positive integer n is said to be base-able if there exists positive integers a and b, with b > 1, such that $n = a^b$. How many positive integer divisors of 729000000 are base-able?
- 7. Compute the value of

$$\sin^2\left(\frac{\pi}{7}\right) + \sin^2\left(\frac{3\pi}{7}\right) + \sin^2\left(\frac{5\pi}{7}\right).$$

Your answer should not involve any trigonometric functions.

- 8. NASA is launching a spaceship at the south pole, but a sudden earthquake shock caused the spaceship to be launched at an angle of θ from vertical ($0 < \theta < 90^{\circ}$). The spaceship crashed back to Earth, and NASA found the debris floating in the ocean in the northern hemisphere. NASA engineers concluded that $\tan \theta > M$, where M is maximal. Find M. Assume that the Earth is a sphere, and the trajectory of the spaceship (in the reference frame of Earth) is an ellipse with the center of the Earth one of the foci.
- 9. A positive integer N is a triple-double if there exists non-negative integers a, b, c such that $2^a + 2^b + 2^c = N$. How many three-digit numbers are triple-doubles?
- 10. Consider the set of all permutations, \mathcal{P} , of $\{1, 2, \dots, 2022\}$. For permutation $P \in \mathcal{P}$, let P_1 denote the first element in P. Let sgn(P) denote the sign of the permutation. Compute the following number modulo 1000:

$$\sum_{P \in \mathcal{P}} \frac{P_1 \cdot \operatorname{sgn}(P)^{P_1}}{2020!}.$$

(The sign of a permutation P is $(-1)^k$, where k is the minimum number of two-element swaps needed to reach that permutation).

- 11. A positive integer is *detestable* if the sum of its digits is a multiple of 11. How many positive integers below 10000 are detestable?
- 12. Let ABC be an acute triangle with circumcircle ω . Let D and E be the feet of the altitudes from B and C onto sides AC and AB, respectively. Lines BD and CE intersect ω again at points $P \neq B$ and $Q \neq C$. Suppose that PD = 3, QE = 2, and $AP \parallel BC$. Compute DE.

CMIMD 2023

13. Suppose that the sequence of real numbers a_1, a_2, \ldots satisfies $a_1 = -\sqrt{1}, a_2 = \sqrt{2}$, and for all k > 1,

$$\frac{a_{k+1} + a_{k-1}}{a_k} = \frac{\sqrt{3} + \sqrt{1}}{\sqrt{2}}.$$

Find a_{2023} .

- 14. Let ABC be points such that AB = 7, BC = 5, AC = 10, and M be the midpoint of AC. Let ω , ω_1 be the circumcircles of ABC and BMC. Ω , Ω_1 are circles through A and M such that Ω is tangent to ω_1 and Ω_1 is tangent to the line through the centers of ω_1 and Ω . D, E be the intersection of Ω with ω and Ω_1 with ω_1 . If F is the intersection of the circumcircle of DME with BM, find FB.
- 15. Equilateral triangle T_0 with side length 3 is on a plane. Given triangle T_n on the plane, triangle T_{n+1} is constructed on the plane by translating T_n by 1 unit, in one of six directions parallel to one of the sides of T_n . The direction is chosen uniformly at random.

Let a be the least integer such that at most one point on the plane is in or on all of $T_0, T_1, T_2, \ldots, T_a$. It can be shown that a exists with probability 1. Find the probability that a is even.