CMIMD 2023

Carnegie Corporation Promotion Solution

We can first reword this problem as finding the M-th largest element of an array where one element
is replaced every k comparisons.

e Solution for k = cnlog(n) (20 pts). This solution belongs in the category of algorithms which
seeks to complete the task before any replacements occur. We can first sort the array through
merge-sort with k& < cnlog(n) comparisons. Then, we just pick the M-th largest array element
in the sorted array.

e Solution for k = cn, ¢ > 1 (40 pts). Like the former bound, we wish to solve this problem
before any replacements occur. With the optimal deterministic selection algorithm, we can find
the M-th largest element in k = O(n) comparisons.

e Solution for k = n (70 pts). If we treat it as a tournament graph (directed graph with exactly
one edge between any two vertices), a replacement removes at most n — 1 edges but we get n edge
queries at a time. Thus, we will always gain a new edge every time until we have a complete graph
at some point. Given the complete graph, we know how every element compares with every other
element, so we can pick the M-th largest element as the one with exactly M — 1 larger elements.

e Solution for k =n — L@J +1<n—[y/n/2—1]+1 (85 pts).
If we are allowed only n — x + 1 moves, treating it as a tournament graph again, we just keep all
the degrees of vertices < n — z. Then, we will gain a new edge every time until we have a graph
of all degree n — x. One of these vertices is now replaced. The other n — 1 vertices each have
degree at least n — x — 1, so their rank in the array is a range of . For now, consider only these
n — 1 elements. We know at most 2x + 1 elements can be distance x from the true M-th largest
element. These are the elements of rank M — z to M + .

Thus, with 2 comparisons for each of these elements, so a total of z(2x + 1) comparisons, we
can figure out all of their exact positions. If none of them are rank M, then the newly replaced
element must be the rank M element. Thus, we just need n—z+1 > z(2x+1) or x < —ltvdt+on VQ?’”"
e Solution for k = n — | =LHyoHin V25+4"J +1<n—[y/n—1]+1 (100 pts).

Do the previous solution until we reach the 2x + 1 elements that could potentially be rank M.

The element of rank M — z will take 1 additional comparison to rule out. Similarly, the element

of rank M — x + 1 will take at most 2 additional comparisons to rule out. Thus, in total, we

expect to use up at most 1+2+---+ x4+ —1+4---+ 1 = 22 comparisons in the case where we

end up finding the true M-th element last. Otherwise, if the true M-th element is never found,

it must be the newly replaced element. Thus, we just need n — z + 1 > 22 or ¢ < =vo+in V25+4".

e Better Asymptotic Solution with k& = [logy(n — 2)] + [logy(n — 1)] (100 pts). If we have a
sorted sequence, removing an element keeps the rest sorted. Using binary search, we can insert
2 elements into a size < [sorted sequence using binary search in [logy(l)| comparisons. Thus,
we always make progress, so eventually we’ll end up with a fully sorted sequence as we end up
only losing one element at a time, but insert at least 2 elements. We can also verify that this k
is always less than the n — [/n — 5| + 1.

For solutions which work asymptotically but not for small n, there is a deduction of
—5 points.

CMIMD 2023

Scottybeard’s Treasure Solution

e Solution for K = ; (10 pts).

If we only use the instrument twice, we can never sink the island. As such, for our first use we
draw a line up the middle of the island, which cuts our search space in half. We then draw a
line through the middle of the remaining half, which cuts our search space down to K = i in all

cases.

e Idea for K < % (20+ pts).

In order to safely use the instrument more than twice, we need to be able to force a certain
reading in the event that we receive two consecutive “left”s or two consecutive “right”s. To do
this, we can simply draw an upward-oriented line off the left or right side of the island, which
forces a reading of “right” or “left” respectively, taking us out of imminent danger of sinking the
island.

e Solution for K = 13 (30 pts).

Equipped with the idea above, we perform the safest possible binary search by performing the
following for each of 12 steps:

— If the previous two readings were “left”, draw a line off the left side of the island; and
similarly for two consecutive “rights.” (This guarantees that we never sink the island, as we
are forcing the opposite reading.)

— In any other case, draw a line splitting our remaining space of possibilities in half.

We claim this yields a worst-case area of K = ﬁ. The key observation is that lines as in the

first bullet point don’t give us any new information (call them wuninformative), while lines as in
the second bullet point cut our solution space in half (call them informative). As such, the area
of the space of possibilities is 2%, where k is the number of informative lines.

In the worst case, we get as many uninformative lines as possible. Clearly our first two lines
are informative (as there’s nothing to avoid), and we cannot have two consecutive uninformative
lines (as the whole point of an uninformative line is to get us out of imminent danger). Thus at
worst we can have five uninformative lines, which can happen with, e.g., LLRRLLRRLLRR. This

corresponds to 7 informative lines, or an area of 277 = %8.

o Idea for K < 3z (50+ pts).

The hurdle that we have faced so far is that in the event that we get unlucky and have identical
consecutive readings, we have to essentially “throw away” a use of the instrument (what the
previous solution called “uniformative lines”). To improve beyond this, we need to reduce the
likelihood that this happens. To do this, instead of splitting our solution space in half each time,
we bias our split point by a bit in order to make it less likely that we see the same reading twice
in a row.

CMIMD 2023

e Solution for K = Kjn = ﬁ (75-100 pts).

Claim: Kpyin > 155-
Proof of claim: Consider the set of all possible sequences of outputs from the instrument. There
is a natural correspondence between this set and the set of all LR-strings of length 12 that have

no three consecutive L’s and no three consecutive R’s, let us call such strings good.

We seek to count the number of good strings of length 12. Let A, denote the number of good
strings of length n that end in exactly one L or exactly one R (call this type 1), and let B,, be the
number of good strings of length n that end in two consecutive L’s or two consecutive R’s (call
this type 2). We can then create the recurrences

An+1 = An + By,
Bpi1 = An.

To see why, note that we can construct a type 1 string of length n 4+ 1 by taking any good string
of length n and appending the opposite of its last character (this gives the first recurrence), and
we can construct a type 2 string of length n 4+ 1 by taking a type 1 string and appending its last
character again (note we cannot build such a string from another type 2 string, as otherwise we
would sink the island).

With these recurrences in hand, we can easily compute A; = 2 and By = 0, and a simple inductive
argument yields A,, = 2F,, and B,, = 2F,,_1, where F}, denotes the kth Fibonacci number. Thus
the number of good strings of length n is 2F, 11, so in particular there are 2F73 = 466 good strings
of length 12.

Therefore, there are 466 possible sequences of results we can get from the instrument, so at best
we can separate the island into 466 distinct pieces. To minimize the worst-case area, we would
want all of these pieces to have the same area, or 4%6. Thus we cannot do any better than K = ﬁ,
which completes the proof. U

Thus it remains to show that K = ﬁ is attainable. Consider the following strategy:

— Partition the island into 466 congruent vertical rectangles.

— Lexically order the 466 strings from the proof above, and assign them in order to the rect-
angles from left to right.

— For each of 12 steps, use the following subroutine (all mentioned lines will be directed straight
up):

x If the previous two readings were “left”, draw a line off the left side of the island; and
similarly for two consecutive “rights.” (This guarantees that we never sink the island,
as we are forcing the opposite reading.)

x In any other case, consider the collection of rectangles whose assigned strings agree
with our sequence of readings so far. By our lexicographic ordering, this is a single
contigouous block of rectangles, the left portion of which has ‘L’ as their next character
and the right portion of which has ‘R’ as their next character. Draw a line on the
boundary between the ‘L’ and ‘R’ blocks. (This lets us narrow down our options while
preserving agreement with the strings.)

— At the end of the 12 steps, we will have narrowed the location of the treasure down to a
single rectangle, the one corresponding to our sequence of readings from the instrument.
(Since all of the rectangles have area 4—%6, this is the worst-case area of this algorithm.)

This shows Kpin < so we have indeed obtained a worst-case area of K = Kin = ﬁ.

L
166>

CMIMD 2023

Perfect Shuffle Solution

We define f(im + j) = i+ jn, for all 0 < i < n,0 < j < m. Here, f(x) gives the location of the
z-th card after one shuffle. Then, the answer is the minimum ¢ such that f)(z) = x for all 0 < z < nm.

10
e Solution for k = 1010 (10 pts). Note that each “m-perfect shuffle” is a permutation of
size nm, so a brute force simulation must terminate in (nm)! iterations. We need 6nm steps to
simulate and 2nm steps to check if all cards are in the original place, so the total number of steps

10
is no more than (nm)!(8nm + 1) < 10(nm)™™ < 10 - 102000°° < 1010

e Solution for k£ = 10%* (50 pts). We can decompose the permutation into cycle permutations,
then the answer is the least common multiple of the cycle lengths. To get the list of cycle lengths,
we maintain an array visited to track the list x, f(z), f(f(z)),... for all x that has not been
visited yet. We need 4 arithmetic operations to compute f(x) for any z, 1 step to check if it
is visited, 1 step to set visited[z] = True, and 1 step to increment the current cycle length by
1; we need an outside loop of 2nm steps in total to start the inner loops that visit all cycles.
So we can get the list of all cycle lengths in 9nm steps. We can compute the least common
multiple of 2 numbers using the greatest common divisor in at most 4[log, x| + 2 steps where x
is the smaller one of the 2 numbers. Since the number of cycle permutations is no more than nm
and the length of each cycle is also no more than nm, we can get the answer in no more than
9nm + (4[logy(nm)] + 2)nm < (11 + 800[logy 10])nm < 3.211 - 10%%3 < 10240 steps.

e Solution for k = 10?°! (80 pts). The answer is the order of n modulo (nm — 1). Proof:
flim+j) =i+ jn= (im+j)n—i(nm—1), so f(x) =nx (mod nm —1) for all 0 < x < nm — 1.
Suppose o is the order of n modulo (nm — 1), then for all t < o, f(t)(l) = n! (mod nm — 1),
so fM(1) # 1; meanwhile, V0 < = < nm, f(z) = 2 (mod nm — 1), plus that f(0) = 0 and
f(nm —1) =nm — 1 as the first and last card stays put, so o is the answer.

To compute the order of n modulo (nm —1), we first compute (nm —1) in 2 steps, then run a loop
of i from 1 to (nm — 1) maintaining n* mod (nm — 1) until it becomes 1 where we output i as the
answer. In each iteration, we perform a multiplication with n, a modulo operation, and a compar-
ison, with a loop index increment, so the algorithm finishes in at most 4(nm—1)+2 < 102! steps.

e Solution for k£ = 10'°! (100 pts). Note that the order of n modulo (nm — 1) is always a divisor
of ¢(nm — 1), we can first factorize (nm — 1) to get ¢(nm — 1) and enumerate the divisors of
¢(nm — 1) to get the answer. We first compute (nm — 1) in 2 steps, then have an infinite loop
to extract all prime divisors from nm — 1. The outer loop terminates in at most [v/nm — 1]
iterations, and it takes 5 steps per iteration by checking if the remaining number is divisible by
the loop index (2 steps), incrementing the loop index, and checking if we should break out of the
loop (computing the square of the loop index and check if it is already greater than the remaining
number — if so, the remaining number is the final prime divisor of nm — 1). If the remaining
number is divisible by the loop index i, we know that ¢ is a prime number and we go into an inner
loop to extract all divisors i. We first divide the remaining number by i and append a pair of
the prime number ¢ and the number 1 (the number of i in nm — 1) to a list, then go into a while
loop to check if the remaining number is still divisible by i: if it is then divide it and increment

CMIMD 2023

the second element in the pair, if it is not then store the result and break out of the loop. All the
inner loops take at most 4[logy(nm —1)] steps in total because nm — 1 has at most [logy(nm—1)]
prime divisors.

Then we can compute ¢(nm —1) in at most 2[logy(nm —1)] steps. Note that ¢(nm —1) is always
even, so we can factorize ¢(nm — 1)/2 in at most 5[y/d(nm — 1)/2] + 4[logy(p(nm — 1)/2)]
steps then add the prime divisor 2 back in at most 3 steps. Then we can compute all the positive
divisors of ¢(nm—1) in at most 2d(¢p(nm—1)) steps by searching for the number of prime divisors
where d(x) is the number of positive divisors of z. For each divisor ¢, we compute n' mod (nm—1)
using the exponential by squaring algorithm in no more than 10[log, | steps, check if the result
is 1 and if ¢ is smaller than the current best answer, and update the answer if both conditions
hold.

The total number of steps is at most

5[vVnm — 1] + 4[logy(nm — 1)] + 5[/ ¢(nm — 1)/2] + 4[logy(¢(nm — 1))]
+ 3+ (10[logy(p(nm — 1))] + 5) - d(¢(nm — 1))

< 5[v/nm] + 5[v/nm/2] + 8[logy(nm)] + 3 + (10[logy(nm)] + 5) - exp (

5vV2
s

2(In2) In p(nm — 1))
Inln ¢(nm — 1)

< (

8.54 - 1000 4 1050
1010,

400(In 2)(In 10
ymm+Mm+%%em<(nxn)>

In(2001n 10)

IA A

