
Geometry Round Solutions

1. Triangle ABC is isosceles with AB = AC. The bisectors of angles ABC and ACB meet at I. If
the measure of angle CIA is 130◦, compute the measure of angle CAB.

Proposed by Connor Gordon

Answer. 20◦

Solution. By symmetry, m∠BIA = 130◦ as well, so m∠BIC = (360 − 130 − 130)◦ = 100◦.
Then m∠IBC = m∠ICB = 1

2(180− 100)◦ = 40◦, so m∠ABC = m∠ACB = (2 · 40)◦ = 80◦, and

finally m∠CAB = (180− 80− 80)◦ = 20◦ .

2. Two circles have radius 2 and 3, and the distance between their centers is 10. Let E be the
intersection of their two common external tangents, and I be the intersection of their two common
internal tangents. Compute EI.

Proposed by Connor Gordon

Answer. 24

Solution. For convenience, place everything on a number line with the centers of the circles at 0
(for the circle of radius 2) and 10 (for the circle of radius 3. Notice that if we look at the points of
tangency from E to each circle, we get similar triangles with a similarity ratio of 2 : 3. Moreover,
E is on the ”same side” of both circles, so in particular 0−E

10−E = 2
3 , which yields E = −20.

The same reasoning applies to I, except it’s on ”different sides” of the circle, so we have 10−I
I−0 = 2

3 ,

or I = 4. Then EI = | − 20− 4| = 24 .

3. Four semicircles of radius 1 are placed in a square, as shown below. The diameters of these
semicircles lie on the sides of the square and each semicircle touches a vertex of the square. Find
the absolute difference between the shaded area and the “hatched” area.



Proposed by Connor Gordon

Answer. 4− 2
√
3

Solution. Divide the square into four rectangles and a smaller square as shown. By symmetry,
the light and dark regions in each rectangle have the same area, so the only remaining difference
is the square in the middle.

We can see the rectangles have short side 1 and diagonal 2, so the long side must be
√
3. Thus

the side length of the small square is
√
3− 1, so its area is 4− 2

√
3 .

4. A rhombus R has short diagonal of length 1 and long diagonal of length 2023. Let R′ be the
rotation of R by 90◦ about its center. If U is the set of all points contained in either R or R′ (or
both; this is known as the union of R and R′) and I is the set of all points contained in both R
and R′ (this is known as the intersection of R and R′, compute the ratio of the area of I to the
area of U .

Proposed by Connor Gordon

Answer. 1
2023

Solution. Draw lines from the center to each of the intersection points to split the union into
four congruent kites. The area of the portion of the kite inside the intersection is 1

2 ·
1
2 ·h for some

h that I don’t really care to calculate. The area of the entire kite is 1
2 ·

2023
2 · h for the same h, so

the ratio is simply 1
2023 .

5. In trapezoid ABCD,AB = 3, BC = 2, CD = 5, and ∠B = ∠C = 90◦. The angle bisectors of ∠A
and ∠D intersect at a point P in the interior of ABCD. Compute BP 2 + CP 2.

Proposed by Kyle Lee

Answer. 38− 16
√
2

Solution. Let G = AB ∩ DP and H = CD ∩ AP. First, observe that ∠APD = 90◦ since
∠BAD + ∠ADC = 180◦. Now, since ∠GAP = ∠DAP, we have AD = AG. A similar argument
reveals AD = HD, so ADHG is a rhombus. Then, by symmetry, we have BP = CP. Let the line
passing through P, perpendicular to BC, intersect AD and BC at I and F, respectively. Then,



BP 2 + CP 2 = 2BP 2 = 2(1 + FP 2). But,

FP = FI − PI =
3 + 5

2
−

√
22 + (5− 3)2

2
= 4−

√
2,

so BP 2 + CP 2 = 2(1 + (4−
√
2)2) = 38− 16

√
2 .

6. Let ABCD be a regular tetrahedron. Suppose points X, Y , and Z lie on rays AB, AC, and AD
respectively such that XY = Y Z = 7 and XZ = 5. Moreover, the lengths AX, AY , and AZ are
all distinct. Find the volume of tetrahedron AXY Z.

Proposed by Connor Gordon

Answer.
√
122

Solution. Let x = AX, y = AY , and z = AZ for brevity. The desired volume is
√
2

12 xyz. The
Law of Cosines on each of △AXY , △AY Z, and △AZX yields

x2 + y2 − xy = 49

y2 + z2 − yz = 49

x2 + z2 − xz = 25

Subtracting the second equation from the first gives

x2 − z2 − xy + yz = 0 =⇒ (x+ z − y)(x− z) = 0.

By hypothesis x ̸= z, so x+ z = y. Substituting this into the first equation gives

x2 + (x+ z)2 − x(x+ z) = 49 → x2 + z2 + xz = 49

Subtracting the third equation from this gives 2xz = 24 =⇒ xz = 12. We can then rewrite the
third equation as

(x+ z)2 − 3xz = 25 → x+ z =
√
61.

The desired answer is then
√
2

12
xyz =

√
2

12
xz(x+ z) =

√
2

12
(12)(

√
61) =

√
122 .



7. Four distinct circles of radius r are on the surface of a unit sphere such that they are pairwise
tangent. Find r.

Proposed by Thomas Lam

Answer.
√

2
3

Solution. The 6 tangency points by symmetry form an octahedron, An octahedron inscribed
in a unit sphere has a side length of 1/

√
2. Each circle has three of these tangency points on it

in an equilateral triangle which is side length 1/
√
2, so it must have radius

√
2/
√
3 .

8. Let ω be a unit circle with center O and diameter AB. A point C is chosen on ω. Let M , N
be the midpoints of arc AC, BC, respectively, and let AN,BM intersect at I. Suppose that
AM,BC,OI concur at a point. Find the area of △ABC.

Proposed by Kevin You

Answer. 24
25

Solution. Let the intersection of AM,BC,OI be P . Additionally, let D be the midpoint of
BC.

Claim 1. △AIP is a 45-45-90 triangle.
Note that △ABP is an isosceles triangle, and since I is on altitude BM , △AIP is also isosceles.
Additionally, since M,N are midpoints of their respective arcs, arc MN extends 90◦, so an
inscribed angle, ∠MAN = ∠PAI = 45◦. Henceforth, △AIP is a 45-45-90 triangle, as desired.

Claim 2. △CID is a 45-45-90 triangle. From the previous step, OI is perpendicular to AN ,
and additionally ∠IAO = ∠IAC = ∠INO, hence we have that AI = IN . So, I is equidistant
between two parallel lines AC,ON , which implies IC = ID. Next, since ∠AIP = ∠ACP = 90◦,
we have AICP is cyclic. Thus, ∠DCI = 180◦ − ∠PCI == ∠PAI = 45◦, and △DCI is also a
45-45-90 triangle.

Claim 3. △AIC ∼= △CID.
We already have AI = PI and CI = DI. Moreover, ∠AIC = ∠AIP + ∠PIC = 90◦ + ∠PIC =
∠CID + ∠PIC = ∠PID. Hence, △AIC ∼= △CID (in fact, the two triangles are related by a
90◦ rotation about I).

Finally, we obtain from the triangle congruence that AC = PD. However, AB = PB, which
means AB = PB = PD + DB = AC + BC/2. This gives us a relation between the three side
lengths of △ABC, and along with the fact that △ACB is right allows us to see that △ACB is a

3-4-5 triangle. The answer is 24
25 .

9. Let △ABC be a triangle with circumcenter O satisfying AB = 13, BC = 15, and AC = 14.
Suppose there is a point P such that PB ⊥ BC and PA ⊥ AB. Let X be a point on AC such
that BX ⊥ OP . What is the ratio AX/XC?

Proposed by Thomas Lam



Answer. 169
225

Solution. I claim that BX is the symmedian of ABC. Reflect B over A to B′ and draw circle
ω, centered at P through B (and B′). Also draw circumcircle Ω of ABC. then line BX is the
radical axis between ω and Ω.

Now invert about B. B′∗ is the midpoint of BA∗, Ω maps to A∗C∗, and ω maps to a line
parallel to BC but passing through B′∗. Thus, as BC is the same line as BC∗, ω maps to the
line through B′∗ and the median of A∗C∗. This means that the line BX, which is the same as
the line through B and the intersection of ω and Ω, must be the median of the triangle A∗BC∗.
Inverting back reflects this over the angle bisector, so BX must be a symmedian.

Thus, the final answer would be 132/153 = 169
225

10. The vertices of △ABC are labeled in counter-clockwise order, and its sides have lengths CA =
2022, AB = 2023, and BC = 2024. Rotate B 90◦ counter-clockwise about A to get a point B′.
Let D be the orthogonal projection of B′ unto line AC, and let M be the midpoint of line segment
BB′. Then ray BM intersects the circumcircle of △CDM at a point N ̸= M . Compute MN .

Proposed by Thomas Lam

Answer. 2
√
2

Solution. In general, if a, b, c denote the usual sides, and a > b, then MN = a2−b2√
2c

. If b, c, a =

n, n+ 1, n+ 2 for a positive integer n, this magically simplifies to 2
√
2 .

Begin by letting C ′ be the intersection of the A-altitude and line B′D. The crucial observation
is that △ABC ∼= △B′AC ′. Moreover both these triangles are positively oriented, so there exists
a rotation that sends one to the other. A moment of inspection reveals that the center of this
rotation is M .

Label the feet of the A,B, and C-altitudes as E,F,G. By the rotation observation, we see that
∠CMC ′ = 90◦, and so it follows that CDNMEC ′ is a cyclic hexagon. By Power of a Point, we
obtain

(B′M −MN) ·B′M = B′D ·B′C ′ = AF · b
and

BM · (BM +MN) = BE ·BC = BE · a.
Subtracting, and using BM = B′M , we see that

BE · a−AF · b = (BM)(2MN) = (AB
√
2)MN = c

√
2MN.

So MN = BE·a−AF ·b√
2c

. This is computable as-is, but notice that BE · a,AF · b are the powers of

A and B to the circumcircle of △CEF , so by Power of a Point we have that BE · a − AF · b =
BP 2−AP 2, where P is the circumcenter of △CEF . But P lies on the C-altitude, so by applying
the Pythagorean Theorem we in fact have that BP 2 −AP 2 − a2 − b2. Thus we have proven that,
indeed, MN = a2−b2√

2c



11. The surface of a table is an ellipse with semimajor axis 4 and semiminor axis 2 (imagine starting
with a circle of radius 1, stretching it by a factor of 4 in the x direction, and then stretching that
by a factor of 2 in the y-direction). A circular coin of radius 1 is dropped uniformly randomly
onto the table such that its center is on the table. Approximate the probability that the entire
coin is on the table (i.e. that no part of the coin is hanging off the table). Express your answer
as a decimal rounded to 6 places.

Proposed by Connor Gordon

Answer. 0.3540178


