
1. Do not look at the test before the proctor starts the round.

2. This test consists of 15 short-answer problems to be solved in 60 minutes.

3. Write your team name and team ID on your answer sheet.

4. Write your answers in the corresponding boxes on the answer sheets.

5. No computational aids other than pencil/pen are permitted.

6. If you believe that the test contains an error, submit your protest in writing to Doherty Hall
2302.



Team

1. LetA1A2A3A4 andB1B2B3B4 be two squares such that the boundaries ofA1A2A3A4 andB1B2B3B4

does not contain any line segment. Construct 16 line segments AiBj for each possible i, j ∈
{1, 2, 3, 4}. What is the maximum number of line segments that don’t intersect the edges of
A1A2A3A4 or B1B2B3B4? (intersection with a vertex is not counted).

Proposed by Allen Zheng

Answer: 12

Solution. We claim that the maximum is 12 ; take 2 concentric squares with parallel edges for
construction. To see we cannot do better, if there are 13 such edges then there exists one of
A1, . . . , A4, say A1, such that all of A1Bi(1 ≤ i ≤ 4) are joined by edges that do not intersect the
sides of B1B2B3B4. This means that A1 must be in the interior of B1B2B3B4, and similarly one
of the vertices of the square B1B2B3B4 must be in A1A2A3A4, say B1. Then at most 2 edges not
touching the sides of the squares can be drawn from each of A2, A4 giving a total of≤ 4+2+2+4 = 12
edges, contradiction.

Comment: During the contest we accepted 16 as an answer, since if one considers ”intersection
with vertex” geometrically then by placing one concentric square inside the other with parallel
sides, the edges that do intersect the boundary of the inner square do so at their interior but their
intersection is only with vertices of the inner square.

2. Find the smallest positive integer n for which 3152 − n2 evenly divides 3153 − n3.

Proposed by Kyle Lee

Answer: 90

Solution. Consider when n ≤ 314. We require

3153 − n3

3152 − n2
=

(315− n)(3152 + 315n+ n2)

(315− n)(315 + n)
=

3152 + 315n+ n2

315 + n
= n+

3152

n+ 315

to be an integer, so n + 315 | 3152, where n + 315 ∈ (315, 315 · 2). Since 3152 = 34 · 52 · 72, we
see that the possible values of n + 315 are 405, 441, 525, 567, so the smallest possible value of n is
405− 315 = 90 .

3. Let ABCD be a rectangle with AB = 10 and AD = 5. Suppose points P and Q are on segments
CD and BC, respectively, such that the following conditions hold:

• BD ∥ PQ

• ∠APQ = 90◦.

What is the area of △CPQ?

Proposed by Kyle Lee

Answer:
225

16



Solution. Let A = (0, 5), B = (10, 5), C = (10, 0), D = (0, 0) on the coordinate plane. Then
P = (a, 0) and Q = (10, b) for some reals 0 ≤ a ≤ 10 and 0 ≤ b ≤ 5. The first condition gives
b/(10 − a) = 1/2 and the second condition gives −5/a = (a − 10)/b. Solving these two equations

simultaneously gives (a, b) = (5/2, 15/4). Then, the area of CPQ is simply 1
2b(10− a) = b2 =

225

16
.

4. Let △ABC be equilateral with integer side length. Point X lies on BC strictly between B and C
such that BX < CX. Let C ′ denote the reflection of C over the midpoint of AX. If BC ′ = 30, find
the sum of all possible side lengths of △ABC.

Proposed by Connor Gordon

Answer: 130

Solution. Note that CAC ′X is a parallelogram, so BX||AC ′ and thusXAC ′B is a trapezoid. Let
AB and XC ′ intersect at P . A simple angle chase shows that △APC ′ and △XPB are equilateral,
so it follows that AXBC ′ is an isosceles trapezoid and AX = BC ′ = 30.

To finish, note that the length ℓ of an internal cevian of an equilateral triangle with side length s

satisfies s
√
3

2 ≤ ℓ < s, so it follows that 30 < s ≤ 30 · 2√
3
=

√
1200, where one can easily note that

34 <
√
1200 < 35. It follows that the possible values for s are 31, 32, 33, and 34, for a sum of 130 .

5. For any integer a, let f(a) = |a4 − 36a2 + 96a− 64|. What is the sum of all values of f(a) that are
prime?

Proposed by Alexander Wang

Answer: 22

Solution. (a2)2 − (6a − 8)2 = (a2 − 6a + 8)(a2 + 6a − 8) = (a − 2)(a − 4)(a2 + 6a − 8). Two
multiplicands must be either 1 or -1, so a can only be 1, 3, or 5, and 1 and 3 give values of 3 and
19 respectively, which sum to 22 .

6. There are 9 points arranged in a 3×3 square grid. Let two points be adjacent if the distance between
them is half the side length of the grid. (There should be 12 pairs of adjacent points). Suppose that
we wanted to connect 8 pairs of adjacent points, such that all points are connected to each other.
In how many ways is this possible?

Proposed by Kevin You

Answer: 192

Solution. The key claim to simplify calculations is that there must be no cycles in the figure.

If we look at the graph formed by the points and connected edges, we have a tree. This is because
there are 9 points, and we only have enough edges to connect the points together; we do not have
any edges to waste make cycles.

So, we will consider casework, where we remove 4 edges out of 12 possible edges, so that all cycles
are broken.



Let the edges be annotated as follows. We also assign numbers to outer edges.
− −

| | |
− −

| | |
− −




1 2
8 | 3

− −
7 | 4

6 5


We iterate through number of inner edges broken. Note that we have four kinds of cycles: the
outer square (containing 4 squares), four L-shaped blocks (containing 3 squares), four rectangles
(containing 2 squares), and 4 small squares (containing 1 square)

Case 1. All inner edges are broken.

The outer square is a cycle, and it fails.

Case 2. Three inner edges are broken.


− −

| × |
× ×

| | |
− −


Note that all smaller cycles are broken; we just need to break the outer square. So, there are 4
symmetries for the inner edges, and 8 cases for the outside, yielding 4 · 8 cases.

Case 3a. Two inner edges are broken.


− −

| × |
× −

| | |
− −


Here, all cycles are broken, except the L-shape block on the top left, and the small square on the
bottom right. It follows that we need to break one edge from each of {4, 5} and {1, 2, 3, 6, 7, 8}. We
have 4 · 2 · 6 cases.

Case 3b. Two inner edges are broken.


− −

| | |
× ×

| | |
− −


Here, all cycles are broken, except the two vertical rectangles. It follows that we need to break one
edge from each of {2, 3, 4, 5} and {1, 6, 7, 8}. We have 2 · 42 cases.

Case 4. One inner edges are broken.




− −

| × |
− −

| | |
− −


Here, we need to break the two bottom squares, and the upper rectangle. (The outer square and
the L-shape will also be broken)

It follows that we need to break one edge from each of {4, 5}, {6, 7}, and {1, 2, 3, 8}. We have 4 ·22 ·4
cases.

Case 5. Zero inner edges are broken.


− −

| | |
− −

| | |
− −


Here, we need to break each small square. (All other cycles will also be broken)

It follows that we need to break one edge from each of {2, 3}, {4, 5}, {6, 7}, {1, 8}. We have 24

cases.

The total number of cases is

4 · 8 + 4 · 2 · 6 + 2 · 42 + 4 · 22 · 4 + 24 = 192

7. A 3×2×2 right rectangular prism has one of its edges with length 3 replaced with an edge of length
5 parallel to the original edge. The other 11 edges remain the same length, and the 6 vertices that
are not endpoints of the replaced edge remain in place. The resulting convex solid has 8 faces, as
shown below.

Find the volume of the solid.

Proposed by Justin Hsieh



Answer:
22 + 11

√
2

3

Solution.

First, the new solid is still symmetric about the plane containing the midpoints of the edges parallel
to the new edge. This is because the remaining edges must remain the same length, and the new
edge is parallel to the old edge. Now consider coordinates: suppose the original prism had opposite
vertices (0, 0, 0) and (3, 2, 2), and we replaced the edge from (0, 0, 0) to (3, 0, 0). The new edge has
endpoints (−1, y, z) and (4, y, z) for some y, z. The point (−1, y, z) is distance 2 from both (0, 2, 0)

and (0, 0, 2). This allows us to conclude that y = z = 1−
√

1
2 .

Split the solid into two pyramids with base 2+
√
2 and height 1, and a prism with base 2+

√
2 and

height 3, for a volume of
22 + 11

√
2

3
.

8. There are 36 contestants in the CMU Puyo-Puyo Tournament, each with distinct skill levels.

The tournament works as follows: First, all
(
36
2

)
pairings of players are written down on slips of

paper and are placed in a hat. Next, a slip of paper is drawn from the hat, and those two players
play a match. It is guaranteed that the player with a higher skill level will always win the match.
We continue drawing slips (without replacement) and playing matches until the results of the match
completely determine the order of skill levels of all 36 contestants (i.e. there is only one possible
ordering of skill levels consistent with the match results), at which point the tournament immediately
finishes. What is the expected value of the number of matches played before the stopping point is
reached?

Answer:
22085

36

Proposed by Dilhan Salgado

Solution. WLOG say the skill levels of the contestants are 1 through 36.

We claim that the tournament finishing is equivalent to the matches (1, 2), (2, 3), (3, 4), . . . , (35, 36)
being played. First note that if all of these matches are played then we clearly will have a valid
ranking order. Now, note that if any of these (i, i + 1) matches have not been played then the
order of contestant i and contestant i+1 cannot be determined, as the ranking order would still be
consistent if we swapped the two.



Now given this information, we must finish the problem. There are 35 critical matches, and 36·35
2 −

35 = 35·34
2 matches that aren’t important to the final standings.

Each of the critical matches must be played. Now, we claim that each of the non-critical matches
is played with probability exactly 35

36 . We can see this by looking at when each of these matches is
played over all possible permutations of slips. The match is only not played in a given permutation
if it is after all of the critical matches in that permutation, which happens with probability exactly
1
36 by symmetry.

Now combining this information we get that the final answer is 35+ 35·17·35
36 = 35·(595+36)

36 =
22085

36
.

9. For natural numbers n, let r(n) be the number formed by reversing the digits of n, and take f(n)

to be the maximum value of r(k)
k across all n-digit positive integers k.

If we define g(n) =
⌊

1
10−f(n)

⌋
, what is the value of g(20)?

Proposed by Adam Bertelli

Answer: 90909091

Solution. First, we will show that, for an even number of digits, the value of k maximizing r(k)
k is

10 . . . 09 . . . 99, where the two halves are equal in length. Note that the value of r(k)
k for this number

is less than 10. Now, if we decrease any digit on the right half, we are reducing the numerator of our
expression at least 10 times faster than we are the denominator, so this will decrease the fraction. If
we increase any digit on the left half, we are increasing the denominator faster than the numerator,
so this will also decrease the fraction. Now, we can write our optimal number k as 102n−1+10n−1,
where there are 2n digits, and r(k) as 102n − 10n + 1. Thus,

1

10− f(n)
=

102n−1 + 10n − 1

(102n + 10n+1 − 10)− (102n − 10n + 1)
=

102n−1 + 10n − 1

10n+1 + 10n − 11
=

1

11
· 10

2n−1 + 10n − 1

10n − 1

Note that (10n − 1)(10n−1 + 1) = (102n−1 + 10n − 1)− 10n−1, so our fraction is equal to

10n−1 + 1

11
+

10n−1

11(10n − 1)

As n = 10, the first term’s numerator is in fact divisible by 11, and we can approximate the quotient
by using the decimal expansion of 1

11 = 0.090909 . . . to get that it must be the first integer greater

than 90909090.909 . . ., or 90909091 . The second term is approximately 1
110 , so we may safely

discard it when flooring to get our answer.

10. Adam places down cards one at a time from a standard 52 card deck (without replacement) in a
pile. Each time he places a card, he gets points equal to the number of cards in a row immediately
before his current card that are all the same suit as the current card. For instance, if there are
currently two hearts on the top of the pile (and the third card in the pile is not hearts), then placing
a heart would be worth 2 points, and placing a card of any other suit would be worth 0 points.
What is the expected number of points Adam will have after placing all 52 cards?

Proposed by Adam Bertelli



Answer:
624

41

Solution. We can observe that, due to the way the scoring system scales, our total score will in
fact be equal to number of same-suit runs of length k in our deck over all 2 ≤ k ≤ 13, including
overlaps (for instance, the 4th card in a run will add an additional run of lengths 2, 3, and 4, and
scores 3 additional points). Thus it suffices to compute the expected number of same-suit runs of
length k. By linearity of expectation, we can simply compute the odds of a single run occurring
within k fixed consecutive spots, and multiply this by the number of different places these k spots
could be, which is 53− k.

The probability of a run occurring is 4 choices for fixing a suit, times
(
52−k
39

)
ways to place the

wrong suit cards outside of our run, divided by the total number of ways we could have placed
our suit cards, or

(
52
13

)
. Thus our expression becomes 4

(5213)

∑13
k=2

(
52−k
39

)
(53 − k). This is equivalent

to 4

(5213)

∑11
k=0

(
k+39
39

)
(k + 40), which is equivalent to 160

(5213)

∑11
k=0

(
k+40
40

)
. By hockey-stick identity, this

simplifies to 160

(5213)
·
(
52
41

)
=

624

41
.

11. Let {εi}i≥1, {θi}i≥0 be two infinite sequences of real numbers, such that εi ∈ {−1, 1} for all i, and
the numbers θi obey

tan θn+1 = tan θn + εn sec(θn)− tan θn−1, n ≥ 1

and θ0 =
π
4 , θ1 =

2π
3 . Compute the sum of all possible values of

lim
m→∞

(
m∑

n=1

1

tan θn+1 + tan θn−1
+ tan θm − tan θm+1

)

Proposed by Grant Yu

Answer: 1 +
√
3

Solution. Let xi = tan θi. Then x0 = 1, x1 = −
√
3 and

xn+1 = xn + εnχn

√
1 + x2n − xn−1

where χn := sec(θn)√
1+tan2 θn

∈ {±1}.Thus

(xn+1 − xn + xn−1)
2 = 1 + x2n.

Rearranging gives (xn+1 + xn−1)
2 − 2(xn+1 + xn−1)xn = 1. Now, divide both sides by xn−1 + xn+1

to get
1

xn+1 + xn−1
= xn−1 + xn+1 − 2xn.

Therefore
m∑

n=1

1

tan θn+1 + tan θn−1
+ tan θm − tan θm+1 = x0 − x1 = 1 +

√
3

which is independent of m.



12. Let ABCD be a cyclic quadrilateral with AB = 3, BC = 2, CD = 6, DA = 8, and circumcircle
Γ. The tangents to Γ at A and C intersect at P and the tangents to Γ at B and D intersect at
Q. Suppose lines PB and PD intersect Γ at points W ̸= B and X ̸= D, respectively. Similarly,
suppose lines QA and QC intersect Γ at points Y ̸= A and Z ̸= C, respectively. What is the value
of WX2

Y Z2 ?

Proposed by Kyle Lee

Answer:
29

14

Solution.

First, we compute AC2 = (ac+bd)(ad+bc)
ab+cd = 68

3 and BD2 = (ac+bd)(ab+cd)
ad+bc = 51, where a = AB = 3,

b = BC = 2, c = CD = 6, and d = DA = 8.

Lemma: Given a harmonic quadrilateral PQRS with PQ = p, QR = q and PR = x, we have

SP = p · x√
2p2 + 2q2 − x2

SR = q · x√
2p2 + 2q2 − x2

.

To see this, first note that, by the definition of harmonic quadrilaterals, we have QP
QR = SP

SR , so we
can write SP = py and SR = qy for some constant y. From here, applying the strong form of



Ptolemy’s theorem yields

x2 =
2pqy · (p2 + q2)y

pq(1 + y2)
=⇒ y2 =

x2

2(p2 + q2)− x2
,

from which the desired conclusion directly follows.

Now, let AC = m and BD = n for ease of computation. Using the above lemma on ABCW,
we have WA = 3m√

26−m2
and WC = 2m√

26−m2
. Doing the same for AXCD, we get XA = 8m√

200−m2

and XC = 6m√
200−m2

. Then by Ptolemy’s theorem on AXCW, we have

WX2 =

(
AX · CW +XC ·WA

AC

)2

=

 34m2√
(200−m2)(26−m2)

m

2

=
342m2

(200−m2)(26−m2)
.

A similar approach yields Y Z2 = 342n2

(146−n2)(80−n2)
. Finally, we compute

WX2

Y Z2
=

342m2(146− n2)(80− n2)

342n2(200−m2)(26−m2)

=
68
3 (146− 51)(80− 51)

51(200− 68
3 )(26−

68
3 )

=
29

14
.

13. Let Fn denote the nth Fibonacci number, with F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for n ≥ 2.
There exists a unique two digit prime p such that for all n, p|Fn+100 + Fn. Find p.

Proposed by Sam Rosenstrauch

Answer: 41

Solution. Let α and β be the roots of x2 − x − 1 = 0. Then α50 and β50 are both roots of
the polynomial x2 − (α50 + β50)x + (αβ)50 = 0, and from Vieta’s we have αβ = −1 so we know
α50 and β50 are roots of x2 − (α50 + β50)x + 1 = 0. However αn + βn is equal to the nth Lucas
number, which are defined by L0 = 2, L1 = 1 and Ln = Ln−1 + Ln−2 for n ≥ 2. Thus we have
α100−L50α

50+1 = 0 and β100−L50β
50+1 = 0. Thus we have for all n αn+100−L50α

n+50+αn = 0(I)
and βn+100 − L50β

n+50 + βn = 0(II). Subtracting (I) from (II) and dividing both sides by α − β

gives αn+100−βn+100

α−β − L50 · αn+50−βn+50

α−β + αn−βn

α−β = 0. By Binet’s formula Fn = αn−βn

α−β , so this gives
Fn+100 + Fn = L50Fn+50. We now wish to examine the divisors of L50. We see that it is the case

that L50
L10

= α50+β50

α10+β10 = α40 − α30β10 + α20β20 − α10β30 + β40 = L40 − L20 + 1, so L10|L50. We can

compute L10 = 123 = 3 · 41, which gives 41 as our final answer.



14. Let a tree on mn+ 1 vertices be (m,n)-nice if the following conditions hold:

• m+ 1 colors are assigned to the nodes of the tree

• for the first m colors, there will be exactly n nodes of color i (1 ≤ i ≤ m)

• the root node of the tree will be the unique node of color m+ 1.

• the (m,n)-nice trees must also satisfy the condition that for any two non-root nodes i, j, if the
color of i equals the color of j, then the color of the parent of i equals the color of the parent
of j.

• Nodes of the same color are considered indistinguishable (swapping any two of them results in
the same tree).

LetN(u, v, l) denote the number of (u, v)-nice trees with l leaves. Note thatN(2, 2, 2) = 2, N(2, 2, 3) =
4, N(2, 2, 4) = 6. Compute the remainder when

∑789
l=123N(8, 101, l) is divided by 101.

Definition: Any rooted, ordered tree consists of some set of nodes, each of which has a (possibly
empty) ordered list of children. Each node is the child of exactly one other node, with the exception
of the root, which has no parent. There also cannot be any cycles of nodes which are all linearly
children of each other.

Proposed by Advait Nene

Answer: 59

Solution. For convenience of discussion, draw the ordered tree in levels where within each level
every vertex has the same distance to the root, and the vertices are drawn from left to right, with
the root at the top and each level is a horizontal line below some level that is closer to the root. We
proceed the discussion with n = 101 being a prime.

Consider the following operation on a (m,n)-nice tree: for each vertex in the tree we shift the edges
going out of a vertex into edges going out of the vertex that has the same color and immediately to
its right, if exists; otherwise shift these out-edges so that they become out-edges from the leftmost
vertex that has the same color, keeping all endpoints of out-edges fixed throughout the operation.
Note that all edges at the root node is fixed by the operation, while any other edge cycles through 101
vertices of a particular color, making its way back to its original position after we apply the operation
101 times. Let T1, . . . , T101 be the results after we apply the operation 1, . . . , 101 times, respectively.
Then T101 is the original tree and T1, . . . , T101 are pairwise distinct, unless T1 = · · · = T101 (since
101 is prime and the period of the orbit would divide 101).

It follows that the exceptions happen exactly when T1 is a fixed point of the operation, i.e., every
node of the same color must have the exact same children, and must all be exact copies of each other.

Specifically leaves must appear in bundles of 101 as well, so if N(m,n, k)
101
̸≡ 0 then 101|k. This

also means that the edges between the root node and its closest vertices, along with which colors
are connected to each other, determine a unique tree that has not been grouped into some group
of 101 in an orbit produced by our operation. Let Ns(m,n, k) be the number of (m,n)-nice trees
with k leaves and s vertices in the first level among the exceptions. Then we may write k = 101l
for some nonnegative integer l and

Ns(m, 101, k) = Ns(m, 1, l :=
k

101
)

(
# of ways to form 101s closest vertices to root

# of ways to form s closet vertices to root

)



=

(
101s

101,...,101

)
s!

Ns(m, 101, l).

Lemma: Thus N(8, 101, 101l) ≡ N(8, 1, l) (mod 101) and N(8, 101, t) ≡ 0 for t ̸≡ 0 (mod 101).

The case where t is not divisible by 101 has already been discussed above, so it suffices to prove the
lemma when the number of leaves is divisible by 101.

Note that 1
s!

(
101s

101,...,101

)
is also the number of partitions of N101s = {1, . . . , 101s} into s indistinguish-

able groups of 101 elements each. We do another shift by sending i to i+ 1− 101 · [101|i] where we
use the notation [S] = 1 if the statement S is true and [S] = 0 if S is false for the indicator function,
i.e. 1 gets sent to 2, 2 gets sent to 3 and so on, until 101 gets sent to 101 + 1− 101 · 1 = 1 but 102
gets sent to 102 + 1 − 101 · 0 = 103. This shift is a bijection over N101s with period dividing 101
(as before), so similar to the pairing argument before, in order to compute 1

s!

(
101s

101,...,101

)
it suffices to

compute the number of fixed points (mod 101). In this case we claim that there is only one fixed
point when s = 8, namely {{1, . . . , 101}, . . . , {101(s− 1) + 1, . . . , 101s}}. Note that if a subset gets
mapped to itself then all elements must be integers in some interval (101t, 101(t + 1)]. Otherwise
this subset must get mapped to another subset in the partition. Repeatedly applying the shift,
this subset must return to its original state after at most 8 moves (since there are at most s = 8
possibilities for elements of this subset before some state appears twice). However since each subset
returns to its original state after 101 moves too and 101 is prime, the sequence of values the subset
attains has period dividing both 101 and some number ≤ 8, which means that the subset repeats
its value under our repeated shifts with period 1, contradiction. Thus all subsets are fixed by the
shift as well, so we conclude that there is only one exception and

1

s!

(
101s

101, . . . , 101

)
≡ 1 (mod 101).

Coupled with the fact that Ns(m, 101, k) = Ns(m, 101, l)· 1s!
(

101s
101,...,101

)
it follows that Ns(m, 101, k) ≡

Ns(m, 101, l) (mod 101), so recalling that we assumed k = 101l, we have

N(m, 101, 101l) =
m∑
s=0

Ns(m, 101, l) ≡
m∑
s=0

Ns(m, 1, l) ≡ N(m, 1, l)

and the lemma follows. ■

Thus the problem is equivalent to
∑7

l=2N(8, 1, l) = 1372 ≡ 59 (mod 101).

Solution 2: Let Gm,n be the set of all (m,n)-nice trees. We can find the generating function for
N(m,n, k), for a fixed m. First, we find the generating function for a related set of trees, with the
first layer of nodes all having the same color (i.e. the number of (m,n)-nice trees such that the root

Call this set of trees G
(1)
m . Define the generating function gm(z, t), where the coefficient on the zntk

term counts the number of trees in G
(1)
m with k leaves.

Define the following functions: Wm(k) = k!
(m!)k/m(k/m)!

and λ(a, b, c) =
(
a
c

)(
b−1

a−c−1

)
We recursively create G

(1)
m while keeping track of the number of leaves in each tree: take a set of r

trees in G
(1)
m of sizes having n1 +1, n2 +1, . . . , nr +1 colors respectively with n1 + · · ·+ nr = n− 1,

remove their roots, then join the r groups of m nodes previously adjacent to some removed node
with a new layer of m nodes, then connect the new layer to a new root in a way so that there are j
leaves from the new layer for some 0 ≤ j ≤ m (which means that altogether the r trees we took from



G
(1)
m had k− j leaves if the new tree has k leaves) Since the colors are distinguishable it follows that

the process is equivalent to choosing an ordered list of r trees then connect rm vertices to m vertices
such that m − j of the vertices have degree ≥ 1. The number of ways to join edges is

(
rm−1
m−j−1

)
by

stars and bars and there are
(
m
j

)
ways to choose the vertices with nonzero degrees for a total of

λ(m, rm, j) ways to join vertices; there are 1
r!

(
rm
m

)
= Wm(rm) ways to partition a set of rm vertices

into r groups of m to correspond to the layers adjacent to removed roots in the r trees taken from

G
(1)
m , which means that the generating function for G

(1)
m -trees having k leaves given m nodes of each

color satisfies gm(z, t) = zℓm(gm(z, t), t) where ℓm(x, t) = tm+
∑∞

r=1Wm(rm)xr
∑m−1

j=0 λ(m, rm, j)tj .
This encodes the recursive process, so we have Let the generating function forN(m,n, k) beGm(z, t).

We construct Gm by taking trees in G
(1)
m , breaking them apart at the root, shuffling around the

resulting branches, and rejoining them at a new root. Using a similar argument as before (casing

on r, the number of G
(1)
m -trees it takes to form the Gm-tree) we have

Gm(z, t) =
∞∑
r=1

Wm(rm)gm(z, t)r

Now, we make the following claim:

N(p, n, k) ≡

{
N(1, n, kp ) p | k
0 p ∤ k

(mod p)

We show that Gp(z, t) ≡ G1(z, t
p) (mod p). A quick calculation shows that Wp(rp) ≡ 1 (mod p) for

all r. Another calculation shows that λ(p, rp, j) ≡ 0 (mod p) for j > 0, and for j = 0, λ(p, rp, 0) ≡ 1
(mod p). =⇒ Gp(z, t) ≡ G1(z, t

p) (mod p) Now we can solve for G1(z, t).

G1(z, t) =
(1− zt+ z) +

√
(z − zt− 1)2 − 4zt

2z

This is the generating function for the Narayana Numbers, which partition the Catalan Numbers.

=⇒
606∑

k=303

N(101, 8, k) ≡
7∑

k=2

N(1, 8, k) = 1372 ≡ 59 (mod 101).

15. Let ABC be a triangle with AB = 5, BC = 13, and AC = 12. Let D be a point on minor arc
AC of the circumcircle of ABC (endpoints excluded) and P on BC. Let B1, C1 be the feet of
perpendiculars from P onto CD,AB respectively and let BB1, CC1 hit (ABC) again at B2, C2

respectively. Suppose that D is chosen uniformly at random and AD,BC,B2C2 concur at a single
point. Compute the expected value of BP/PC.

Proposed by Grant Yu

Answer:
1

arctan 12
5

Solution. Set θ = ∠DCA and let E = AB ∩ CD then one can verify that BP
PC = BE

EC =

5 cos θ+12 sin θ
12 . Integrating over θ gives the final answer of

1

arctan 12
5

.



Proof: We use the notation (P1P2;P3P4) :=
P1P3
P1P4

· P2P4
P2P3

(in signed lengths) to denote the cross ratio
between the four points P1, P2, P3, P4 in that order.

Let the point of concurrence be K and note that (AD;B1C)
B
= (ED;B2C)

K
= (DA;C2B)

C
=

(EA;C1B), hence C1B1 passes through K as well. Let H be the orthocenter of △EBC and F
the foot of the altitude on BC. Then

−1 = (K(EF ∩AD);AD)
E
= (K(EF ∩B1C1);B1C1)

F
= (PE;B1C1)

so EP bisects ∠BEC, as desired.


