
1. Do not look at the test before the proctor starts the round.

2. This test consists of 10 short-answer problems to be solved in 60 minutes and one estimation
question. Each of the short-answer questions is worth points depending on its difficulty, and
the estimation question will be used to break ties. If you do not write an estimate for
estimation, you will be placed last in tiebreaking.

3. Write your name, team name, and team ID on your answer sheet. Circle the subject of the
test you are taking.

4. Write your answers in the corresponding boxes on the answer sheets.

5. No computational aids other than pencil/pen are permitted.

6. Answers must be reasonably simplified.

7. If you believe that the test contains an error, submit your protest in writing to Doherty 2302
by the end of lunch.



Algebra and Number Theory

1. How many 4-digit numbers have exactly 9 divisors from the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}?

Proposed by Ethan Gu

Answer: 33

Solution. We can quickly see that 1, 3, 4 and 5 will be required if we want to reach 9 divisors.
This also gives us 2, 6, and 10. This means we can choose two from the remaining three numbers:
7, 8, and 9 to reach exactly 9 divisors. This gives us:

8× 9× 5 = 360 (omits 7) 8× 3× 7× 5 = 840 (omits 9) 4× 9× 5× 7 = 1260 (omits 8)

Now we can count how many 4-digit numbers each one of the above generates, while making sure
to not miscount overlaps/10-divisor numbers. This only happens at 5× 7× 8× 9 = 2520, 5040, and
7560.

360 generates 25− 3 = 22 4-digit, 9-divisor numbers, 840 generates 7, and 1260 generates 4, which
all sums to 33 .

2. A shipping company charges .30l+ .40w+ .50h dollars to process a right rectangular prism-shaped
box with dimensions l, w, h in inches. The customers themselves are allowed to label the three
dimensions of their box with l, w, h for the purpose of calculating the processing fee. A customer
finds that there are two different ways to label the dimensions of their box B to get a fee of $8.10,
and two different ways to label B to get a fee of $8.70. None of the faces of B are squares. Find
the surface area of B, in square inches.

Answer: 276

Solution. Let a, b, c be the dimensions in inches of box B. There are six possible shipment fees,
in tenths of dollars:

3a+ 4b+ 5c, 3a+ 4c+ 5b, 3b+ 4a+ 5c, 3b+ 4c+ 5a, 3c+ 4a+ 5b, 3c+ 4b+ 5a.

Suppose that the first two fees are equal. We get that 3a+ 4b+ 5c = 3a+ 4c+ 5b, which simplifies
to c = b. However, we are given that B does not contain square faces, so this case is impossible. In
general, no two fees can be equal if any dimension is labeled the same way for both fees.

Suppose that the second and third fees are equal. Then we get that 3a + 4c + 5b = 3b + 4a + 5c,
which simplifies to 2b = a + c, or b = a+c

2 . In general, if two fees are equal and no dimension is
labeled the same way for both fees, then we get that one dimension is the average of the other two
dimensions. In other words, the dimensions of B form an arithmetic progression.

Suppose we set an arbitrary dimension, say b, to be the average of the other two, so that b = a+c
2 .

We get this fact from equating a fee that has 3b and a fee that has 5b; there are two such pairs:

3a+ 4c+ 5b = 3b+ 4a+ 5c

and
3b+ 4c+ 5a = 3c+ 4a+ 5b.

If we substitute b = a+c
2 , then the first pair is equal to 11a+13c

2 , and the second pair is equal to 13a+11c
2 .

If we let 11a+13c
2 = 81 tenth-dollars and 13a+11c

2 = 87 tenth-dollars, then we get (a, c) = (10, 4). We
then conclude that b = 10+4

2 = 7.



The surface area of B is 2(10× 7 + 10× 4 + 7× 4) = 276 square inches.

3. Find the smallest positive integer N such that each of the 101 intervals

[N2, (N + 1)2), [(N + 1)2, (N + 2)2), · · · , [(N + 100)2, (N + 101)2)

contains at least one multiple of 1001.

Proposed by Kyle Lee

Answer: 485

Solution. Note that the interval between two adjacent squares [n2, (n+ 1)2) has width 2n, so if
n > 500, we obviously contain a multiple of 1001. Now, 5002 = 250000, and 1001|250250, thus in
the interval for n = 500, our multiple of 1001 is currently 250 away from the lower bound. As we
begin moving downwards from 5002, our new lower bound’s position will decrease by 5002− 4992 =
999, 4992 − 4982 = 997, 995, 993, . . ., while our multiple of 1001 will decrease by 1001 every time,
thus our multiple of 1001 will approach the lower bound of our interval in increments of 2, 4, 6, 8,
etc. Thus when 2 + 4+ 6+ . . .+ 2k = k(k+ 1) exceeds 250, our multiple of 1001 has surpassed the
lower bound of our next interval, meaning we have skipped an interval, and cannot continue. The
maximal k such that this does not occur is k = 15, which corresponds to N = 500 − k = 485 as
the smallest interval we can use.

4. Let z be a complex number that satisfies the equation

z − 4

z2 − 5z + 1
+

2z − 4

2z2 − 5z + 1
+

z − 2

z2 − 3z + 1
=

3

z
.

Over all possible values of z, find the sum of the values of∣∣∣∣ 1

z2 − 5z + 1
+

1

2z2 − 5z + 1
+

1

z2 − 3z + 1

∣∣∣∣ .
Proposed by Justin Hsieh

Answer: 11
6

Solution. Multiply both sides of the given equation by z to get

z2 − 4z

z2 − 5z + 1
+

2z2 − 4z

2z2 − 5z + 1
+

z2 − 2z

z2 − 3z + 1
= 3.

Then we can rewrite the fractions as(
1 +

z − 1

z2 − 5z + 1

)
+

(
1 +

z − 1

2z2 − 5z + 1

)
+

(
1 +

z − 1

z2 − 3z + 1

)
= 3

=⇒ 3 + (z − 1)

(
1

z2 − 5z + 1
+

1

2z2 − 5z + 1
+

1

z2 − 3z + 1

)
= 3

=⇒ (z − 1) (f(z)) = 0,



letting f : C → C satisfy f(z) =
1

z2 − 5z + 1
+

1

2z2 − 5z + 1
+

1

z2 − 3z + 1
. Therefore either z−1 = 0

or f(z) = 0. Equivalently, if f(z) ̸= 0, then z = 1. The value z = 1 does indeed satisfy the original
equation, and

f(1) =
1

−3
+

1

−2
+

1

−1
= −11

6
.

The final answer is

∣∣∣∣−11

6

∣∣∣∣+ (sum of 0s) =
11

6
.

5. Grant is standing at the beginning of a hallway with infinitely many lockers, numbered, 1, 2, 3, . . .
All of the lockers are initially closed. Initially, he has some set S = {1, 2, 3, . . .}.
Every step, for each element s of S, Grant goes through the hallway and opens each locker divisible
by s that is closed, and closes each locker divisible by s that is open. Once he does this for all s,
he then replaces S with the set of labels of the currently open lockers, and then closes every door
again.

After 2022 steps, S has n integers that divide 102022. Find n.

Proposed by Oliver Hayman

Answer: 64

Solution. Let’s denote Sn to be the set S after n steps, so S0 = {1, 2, 3, . . .}. First, observe
that Sn+1 consists of all natural numbers which have an odd number of divisors from Sn. Now, we
claim that all Sn are multiplicative, meaning that if we select two numbers a, b with gcd(a, b) = 1,
then a, b ∈ Sn ⇐⇒ ab ∈ Sn. We will show this inductively; clearly S0 is multiplicative. Suppose
Sn is multiplicative, and x = pe11 pe22 . . . pekk ∈ Sn+1. Now, since Sn is multiplicative, the number of
divisors of x in Sn, say dSn(x), is simply dSn(p

e1
1 )dSn(p

e2
2 ) . . . dSn(p

ek
k ), which is odd iff all of the

component factors are, meaning x ∈ Sn+1 ⇐⇒
∏

i∈A peii ∈ Sn+1 for any subset A ⊆ {1, 2, . . . , k},
which is enough to show multiplicativity.

Now, this tells us that we can determine Sn by looking at a single prime factor, and it is also clear
by symmetry that Sn acts identically on all prime factors, so we can instead consider the set En of
possible exponents a prime factor in Sn can have. Initially E0 = {0, 1, 2, . . .}, E1 = {0, 2, 4, . . .}, and
so on. By writing out the first few sets, we can observe that En is in fact the set of non-negative
integers x such that n&x = 0, where & denotes the bit-wise and operator. A formal proof of this,
which we will omit, can be carried out by defining f(n, x) = δn&x = (1 if n&x = 0 else 0), and
showing that f(n+1, x+1) = f(n+1, x)⊕ f(n, x+1), where ⊕ denotes the bit-wise xor operator.

Now, 2022 = 111111001102, so elements of E2022 that are ≤ 2022 are just numbers of the form
b1b200b3 in base 2. There are 23 = 8 of these, so we then get 82 = 64 total factors, since 10 is
divisible by 2 primes, and we can choose the exponent for each independently.

6. Find the probability such that when a polynomial in Z2027[x] having degree at most 2026 is chosen
uniformly at random,

x2027 − x|P k(x)− x ⇐⇒ 2021|k

(note that 2027 is prime).

Here P k(x) denotes P composed with itself k times.



Note: the problem was discounted in score calculations because the original answer was wrong.

Proposed by Grant Yu

Answer:
2027!

(2027− q)!20272027q

Solution. Intended solution: replace 2021 by any prime q smaller than but close to p = 2027
(say for example 2017).

By Lagrange Interpolation it can be seen that every function Zp[x] → Zp[x] is a unique polynomial
of degree ≤ p − 1. Moreover the polynomial divisibility condition can be translated as P k(x) =
x∀x ∈ Z2027 ⇐⇒ q|k. Note that P q(x) = x implies P is in fact a permutation on Z2027 such
that every cycle in the cycle decomposition of that permutation has length dividing q. Since q has
only divisors 1, q, if there are a cycles of length 1 and b cycles of length q then a+ bq = 2027 with
b ≥ 1 (else the period would be 1 and the function would be the identity, i.e. P (x) = x). If q
is sufficiently close to 2027, e.g. q = 2017, then b ≤ 1 =⇒ b = 1 =⇒ a = 2027 − q. There
are

(
2027
q

)
ways to choose the fixed points and (q − 1)! ways to permute the q-cycle, so there are(

2027
q

)
(q − 1)! = 2027!

(2027−q)!q such functions. Since there are 20272027 functions total from p to p and

we are choosing one among them uniformly at random, the probability is 2027!
(2027−q)!20272027q

.

7. Let f(n) count the number of values 0 ≤ k ≤ n2 such that 43 ∤
(
n2

k

)
. Find the least positive value

of n such that

4343 | f
(
43n − 1

42

)
Proposed by Adam Bertelli

Answer: 924

Solution. To find the number of integers 0 ≤ k ≤ n satisfying 43|
(
n
k

)
, we can use Lucas’s Theorem,

which tells us that
(
a
b

)
mod p ≡

∏(
ai
bi

)
mod p, where a = (aiai−1 . . . a0)p are the (possibly zero)

digits of a in base p, and likewise for b. In particular, this tells us that this number is not divisible
by 43 only when every bi is at most equal to the corresponding digit ai (this is actually an easier
result that is not hard to show inductively). Thus the number of such numbers b is precisely equal
to

∏
(ai + 1), since we have ai + 1 possible choices for the ith digit of b to satisfy 0 ≤ bi ≤ ai.

This further implies that the number of times 43 divides this product is simply the number of digits
ai = 42.

Now, note that N = 43n−1
42 = 11 . . . 143, so N2 = (11 . . . 1)2 = 123 . . . (n − 1)(n)(n − 1) . . . 32143, if

we ignore carrying. Call this sequence of 2n− 1 digits (ignoring carrying) c2n−2, . . . , c0, and let the
carry level of cx be the number of carries added to the xth place by digits to the right of cx, or

equivalently,

⌊
(cx−1 . . . c1c0)43

43x−1

⌋
.

Clearly the last 43 digits of N2 have carry level 0, as they look like 0(42)(41) . . . 32143. The next 42
digits from the right all have carry level 1, as each of them is followed by a digit that was originally
greater than or equal to 43, and this sequence will look like 0(42)(41) . . . 43243 (note that we skip
the digit 1, as the digit that would’ve been 1 was the first one to have a higher carry level, and hence
was raised by 1, along with the digits to the left of it). It is not hard to see that the next blocks
of 42 digits from the right will have carry levels 2, 3, 4, . . ., and will all look like 0(42)(41) . . . 43243,



and this will continue until we do not have enough increasing digits remaining to form a complete

block of this form. This tells us that our maximum carry level attained is equal to k =

⌈
n− 43

42

⌉
.

Now, if n′ = (n+ k mod 43), our last incomplete block will look something like

(42)01234 . . . (n′ − 1)(n′)(n′ − 1) . . . 43243

all with carry level k. However, as soon as we reach the 42 on the left, the next digit to the left
will receive one less carry, so the next block of 42 digits will have carry level k − 1, and look like
(42)012 . . . (38)(39)(40)43 (again we skip 41 for the same reason as before). We will again have
k − 1 total blocks of this form, and then our final block (the beginning of the number) will just be
1234 . . . (39)(40)43 with carry level 0.

Now, we can count up the number of 42 digits occurring in our blocks - there are k 42’s in the back
half of our number, k − 1 in the front half, and 1 in the middle block, for a total of 2k. However,
note that it is possible for n′ to equal 42, in which case we gain an extra 42 in the middle of our
number. We want 43 such digits total, which is odd, hence we would like to take n′ = 42 and k = 21
to get the smallest possible value of n. For k to be 21 we need n > 42 · 20 + 43 = 883, and we also
know n ≡ n′ − k ≡ 42− 21 mod 43, thus the smallest possible n is 43 · 21 + 21 = 924 .

8. Find the largest c > 0 such that for all n ≥ 1 and a1, . . . , an, b1, . . . , bn > 0 we have

n∑
j=1

a4j ≥ c
n∑

k=1

(∑k
j=1 ajbk+1−j

)4

(∑k
j=1 b

2
jj!

)2

Proposed by Grant Yu

Answer: 1
(e−1)2

Solution. We will repeatedly make use of the fact that e− 1 =
∑∞

k=1
1
k! .

First we bound for all k ≥ 1, k + 1 =
(
k+1
k

)
≤

(
k+j
k

)
for all j ≥ 0 so that 1

(k+j)! ≤
1

(k+1)k!j! . This
implies the bound on sum of reciprocals of factorials:

1

(k + 1)!
≤

∞∑
j=k+1

1

j!
≤

∞∑
j=k+1

1

k!

1

(j − k)!
=

1

(k + 1)k!

∞∑
t=1

1

t!
=

1

k!
· e− 1

k + 1
≤ 1

k!
· e− 1

2
<

1

k!
,

from which we also have
k∑

j=1

1

j!
= e− 1−

∑
j≥k+1

1

j!
> e− 1− 1

k!
.

Now we proceed to solve the problem.

Set ai = 1∀i and bj =
1
j! for all j in the inequality, the LHS becomes n and the RHS becomes

n∑
k=1

 k∑
j=1

1

j!

2

≥
n∑

k=1

(e− 1− 1

k!
)2.



So for the inequality to hold it must be the case that nc ≥
∑n

k=1(e − 1 − 1
k!)

2 for all n, i.e.
c ≥ supn∈N

1
n

∑n
k=1(e− 1− 1

k!)
2. Since (e− 1− 1

k!)k≥1 converges to e− 1 and is strictly increasing,
for any ε > 0 there exists N such that (e − 1 − 1

k!)
2 ≥ (e − 1)2 − ε for all k > N , hence c ≥

supn≥1
1
n

∑n
k=1(e− 1− 1

k!)
2 ≥ (e− 1)2 − ε for all ε > 0, which means that

c ≤ 1

(e− 1)2
.

We can use Hölder to show c = 1
(e−1)2

is optimal: note that

(e− 1)
k∑

j=1

a4j
(k + 1− j)!

 k∑
j=1

b2k+1−j(k + 1− j)!

2

≥
k∑

j=1

a4j
(k + 1− j)!

k∑
j=1

1

(k + 1− j)!

 k∑
j=1

b2k+1−j(k + 1− j)!

2

≥

 k∑
j=1

ajbk+1−j

4

.

Summing over all k we have

(e− 1)

n∑
k=1

k∑
j=1

a4j
(k + 1− j)!

≥
n∑

k=1

(∑k
j=1 ajbk+1−j

)4

(∑k
j=1 b

2
k+1−j(k + 1− j)!

)2 = RHS,

and we may swap sums on the left double sum to obtain
∑n

k=1

∑k
j=1

a4j
(k+1−j)! =

∑n
k=1

∑k
j=1

a4k
j! ≤∑n

k=1(e − 1)a4k, so when c = 1
(e−1)2

, we have LHS
c = (e − 1)2

∑n
k=1 a

4
k ≥ RHS of the original

inequality, so we are done.


