
1. Do not look at the test before the proctor starts the round.

2. This test consists of several problems, some of which are short-answer and some of which
require proofs, to be solved within a time frame of 60 minutes. There are 70 points total.

3. Answers should be written and clearly labeled on sheets of blank paper. Each numbered
problem should be on its own sheet. If you have multiple pages, number them as well (e.g.
1/3, 2/3).

4. Write your team ID on the upper-right corner and the problem and page number of the
problem whose solution you are writing on the upper-left corner on each page you submit.
Papers missing these will not be graded. Problems with more than one submission will not
be graded.

5. Write legibly. Illegible handwriting will not be graded.

6. In your solution for any given problem, you may assume the results of previous problems,
even if you have not solved them. You may not do the same for later problems.



Balance the Board

You place n2 indistinguishable pieces on an n× n chessboard, where n = 290 ≈ 1.27× 1027. Of these
pieces, n of them are slightly lighter than usual, while the rest are all the same standard weight, but you
are unable to discern this simply by feeling the pieces.

However, beneath each row and column of the chessboard, you have set up a scale, which, when
turned on, will tell you only whether the average weight of all the pieces on that row or column is the
standard weight, or lighter than standard. On a given step, you are allowed to rearrange every piece on
the chessboard, and then turn on all the scales simultaneously, and record their outputs, before turning
them all off again. (Note that you can only turn on the scales if all n2 pieces are placed in different
squares on the board.)

Find an algorithm that, in at most k steps, will always allow you to rearrange the pieces in such a
way that every row and column measures lighter than standard on the final step.

Scoring

An algorithm that completes in at most k steps will be awarded:

• 1 pt for k > 1055

• 10 pts for k = 1055

• 30 pts for k = 1030

• 50 pts for k = 1028

• 65 pts for k = 1020

• 80 pts for k = 105

• 90 pts for k = 2021

• 100 pts for k = 500

You are allowed to prove multiple bounds, and will receive points for the best bound that is correctly
proven. Please state which bound you are trying to prove above any proof, or you may not
be awarded points for that bound.

Partial points may be awarded for progress towards the next bound, and partial points may be
deducted for logical flaws or lack of rigor in proofs. To get full points, you must demonstrate that your
algorithm always produces a correct result, and always runs in at most the stated number of moves.



Solutions

For all of these solutions, we will define a row/column to be “empty” if it does not contain a light
piece, and “full” otherwise, so our goal is to make every row and column full. In addition, we will assume
without loss of generality that the starting configuration contains at least one empty row/column, as
otherwise the board can be balanced in 1 step, which trivially satisfies every possible bound.

Solution for k = 1055 (10 pts). If we initially have k > 0 empty columns, then we have at most
n(n − k) squares we don’t know the weight of. We may check these squares one by one by swapping
them out with a square from the empty column, and seeing if the column becomes light or not, so after
n2 − nk + 1 < n2 < 1055 steps, we can balance the board.

Solution for k = 1030 (30 pts). We can speed up the previous solution by binary searching for a
light piece on each column, i.e. take half of a light column and swap it out with half of the empty column.
If the empty column becomes light, repeat this procedure with half of the section we just swapped in.
Otherwise, put that section back and swap in half of the section we didn’t use, and so on. In this way, we
can guarantee we will discover one light piece in at most log2(n) moves, at which point we can swap it
with a random piece in the leftmost column, and continue searching (if the piece from the leftmost column
we swapped with happened to also be light, then we have just found another light piece in 1 < log2(n)
moves, so we again store this in the left column and continue as usual). Since there are n light pieces
total, we can find them all in at most n log2(n) moves, or approximately 1027 · 90 < 1030.

Solution for k = 1028 (50 pts). Again, note that we have at least one empty column.

Now split the remaining grid squares into 2n groups each of size ≤ n/2. For each group, swap it into
the empty column and check if that group contains a light piece. (This takes 2n measurements). As there
are only n light pieces, at most n of the groups contain a light piece, so there are at most n · n/2 light
piece candidates, and therefore at least n2/2 squares are guaranteed to be empty.

Now we do the same process, but this time we can form n/2 empty columns (using the n2/2 empty
squares) and can therefore do n/2 checks in parallel. Thus each step of the process (at least) halves the
number of remaining squares, and takes only 2n

n/2 = 4 measurements.

As we start out with n2/2 “light” candidates and need to end up with n “light” candidates (ie. the
light squares) we need to run the process log2(n/2) times, or 89, and then one final step to put the
light squares in their places. Thus the overall number of measurements is 2n+ 89 · 4 + 1 which is about
2.54 · 1027 < 1028.

Solution for k = 105 (80 pts). You might have noticed that the second half of the last solution was
clearly fast enough to get all the bounds. All we need to do is to get to n/2 empty columns faster.

At any point in time, if we have k free columns, we may run k instances of binary search in parallel.
Each binary search will either make a column empty, or remove a duplicate element from some column
with more than one light piece. Since our initial number of duplicate elements is bounded at our initial
value of k, we can define the number of free columns after i parallel binary searches, or ci, to satisfy the
recurrence ci+1 = 2ci − di (as long as ci < n/2), where di is the number of duplicates found on the ith



move. We can see that the sum of all di is simply our initial k value (THIS IS IMPORTANT: if there’s a
lot of duplicates in columns, then that means that we started out with a lot of empty columns to begin
with). It is easy to show ci increases exponentially (in the worst case d1 is k), thus ci ≈ n/2 in log(n)
parallel binary searches, each taking log(n) time. Once we hit k = n/2, this doubling mechanism doesn’t
really continue to work, so we revert to the original method.

Thus the overall runtime is 90 · 90 + 89 · 4 + 1 < 105.

Solution for k = 500 (100 pts). It’s also possible to get the first half of the problem in only 5 steps.
Consider the board as n/2 groups of dimension 2×n. Split each group into 4 sub-groups A,B,C,D of size
1× n/2.

We now take 3 steps and measure them in the configurations {AB,CD}, {AC,BD}, {AD,BC}.

Now for each 2× n group, if it contains 2 or less light pieces, then we will know exactly which ones of
the subgroups contains a light group. Next, for each group which contains 3 or more light pieces, match
it up with an empty column EF (note that we must have generated enough such empty columns). Then
in 2 steps measure {AE,BF}, {CE,DF}.



This will tells us exactly which sub-groups have a light square, and as there are at most n of them,
there will be n2/2 pieces which we know are not light, and we can re-arrange these pieces into n/2 columns
guaranteed to be empty.

Thus in 5 moves, we have done the first half, and by the method above we can finish in 4 log2(n)
moves, so the overall runtime is 5 + 89 · 4 + 1 < 500



Multiply to the Moon

You are initially given the number n = 1. Each turn, you may choose any positive divisor d | n, and
multiply n by d + 1. For instance, on the first turn, you must select d = 1, giving n = 1 · (1 + 1) = 2 as
your new value of n. On the next turn, you can select either d = 1 or 2, giving n = 2 · (1 + 1) = 4 or
n = 2 · (2 + 1) = 6, respectively, and so on.

Find an algorithm that, in at most k steps, results in n being divisible by the number 20212021
2021 −1.

Scoring

An algorithm that completes in at most k steps will be awarded:

• 1 pt for k > 20212021
2021

• 20 pts for k = 20212021
2021

• 50 pts for k = 1010
4

• 75 pts for k = 1010

• 90 pts for k = 105

• 95 pts for k = 6 · 104

• 100 pts for k = 5 · 104

You are allowed to prove multiple bounds, and will receive points for the best bound that is correctly
proven. Please state which bound you are trying to prove above any proof, or you may not
be awarded points for that bound.

Partial points may be awarded for progress towards the next bound, and partial points may be
deducted for logical flaws or lack of rigor in proofs. To get full points, you must demonstrate that your
algorithm always produces a correct result, and always runs in at most the stated number of moves.



Solutions

For all of the solutions, we define the following notation. Given a natural number m, we define f(m) to
be the least number of steps necessary so that n is divisible by m. We let N = 20212021

2021 − 1, so the
goal of the problem is to bound f(N).

Solution for k = 20212021
2021

(20 pts). Suppose t | n. Using one step, we can multiply n by t+ 1,
so n will be divisible by t + 1. Thus f(t + 1) ≤ f(t) + 1 for all t. Since f(1) = 0, we can apply this
repeatedly to see that f(N) ≤ N − 1.

Solution for k = 1010
4
(50 pts). We prove that for any m, we have f(m) ≤ 2 log2m. Observe

that since 1 is always a divisor of n, we can always multiply by 2 at any step, so f(2t) ≤ f(t) + 1. The
20-point solution tells us that f(t+ 1) ≤ f(t) + 1. So if m has binary expansion 2n1 + 2n2 + · · ·+ 2np for
n1 > · · · > np, we can force m to be a divisor of n within n1 + p − 1 steps (there are n1 doubling steps
and p− 1 increment-by-1 steps).

Since n1 and p are each ≤ log2m, we conclude that f(m) ≤ 2 log2m. This implies, using the rough
estimates 2021 < 104 and log2 2021 < 11, that

f(N) ≤ 2 log2N < 2 · 20212021 log2 2021 < 22 · 108084.

Before moving on to the next solution, we introduce an auxiliary function g(a, b) to be the smallest
possible integer such that

f(xa(xb − 1)) ≤ g(a, b) + f(x− 1)

for all x ≥ 2. For example, g(1, 1) = 1 since if x − 1 divides n, we can ensure that x(x − 1) divides n
after one step, regardless of the particular values of x and n. Similarly, g(1, 2) = 2 since if x− 1 divides
n, then after two steps we can ensure that (x− 1) · x · (x+ 1) = x(x2 − 1) divides n.

Applying this to x = 2021, a = 0, and b = 20212021, we have

f(N) ≤ g(0, 20212021) + f(2020).

By the 50-point solution, we have f(2020) ≤ 2 log2 2020 ≤ 22. In fact, f(2020) ≤ 5 via the sequence of
values 1, 2, 4, 20, 100, 10100.

Observe that if a′ ≤ a, then g(a′, b) ≤ g(a, b), i.e. g is nondecreasing in its first entry. The following
lemmas will be useful in all subsequent solutions.

Lemma 1. Let d | b and a ≥ d. Then g(a, b+ d) ≤ g(a, b) + 1.

Proof. Suppose xa(xb − 1) divides n. Since a ≥ d, xd(xb − 1) also divides n. Since d | b, xd − 1 divides
xb − 1. We then perform the step

n 7→ n ·
(
xd(xb − 1)

xd − 1
+ 1

)
=

n

xd − 1
· (xb+d − 1).

After this step, xb+d − 1 divides n, and we have not affected divisibility by xa. So we’re done.

Lemma 2. g(ca, cb) ≤ g(a, b) + g(0, c). In particular, g(0, cb) ≤ g(0, b) + g(0, c) and g(0, br) ≤ r · g(0, b).

Proof. If x− 1 divides n, then xc− 1 can be obtained in g(0, c) steps. Now xca(xcb− 1) = (xc)a((xc)b− 1)
can be obtained from xc − 1 in an additional g(a, b) steps.



Solution for k = 1010 (75 pts). We prove that for m ≥ 1, we have g(0,m) ≤ m. We know that
g(1, 1) = 1. Applying Lemma 1 repeatedly with a = d = 1, we conclude that g(1,m) ≤ g(1, 1)+m−1 = m,
so g(0,m) ≤ m as desired.

Thus g(0, 2021) ≤ 2021, so Lemma 2 shows that g(0, 20212021) ≤ 20212. So f(N) ≤ 20212 + 5.

Solution for k = 105 (90 pts). We will improve on the last solution by showing that g(0,m) ≤
3 log2m.

Lemma 3. For m ≥ 1, write m = 2n1 + · · ·+ 2np where n1 > · · · > np. Then

g(0,m) ≤ g(2n1−1,m) ≤ 2n1 + p− 1.

Proof. We know g(0, 2) = g(1, 2) = 2. By Lemma 2 we then get g(2a, 2b) ≤ g(a, b) + 2. By Lemma 1, for
any a ≥ 1, we get g(a, b+ 1) ≤ g(a, b) + 1. So, doubling b costs 2 steps while incrementing b by 1 costs 1
step. Every time we double b, we can also double a.

Starting from g(1, 2) = 2, we need n1 − 1 doubling operations and p− 1 increment-by-1 operations to
obtain an m in the second slot. It follows that g(2n1−1,m) ≤ 2(n1 − 1) + (p− 1) + 2.

Since n1 and p are each ≤ log2m, Lemma 3 implies that g(0,m) ≤ 3 log2m. So

g(0, 20212021) ≤ 3 · 2021 · log2 2021 < 66577

so f(N) < 66582.

Solution for k = 6 · 104 (95 pts). For this bound, we apply Lemma 3 to 2021 = 111111001012
to conclude that g(0, 2021) ≤ 27. It follows by Lemma 2 that g(0, 20212021) ≤ 27 · 2021 = 54567, so
f(N) ≤ 54572.

Solution for k = 5 · 104 (100 pts). We claim that g(0, 2021) ≤ 24. We have by Lemma 3 that
g(16, 32) ≤ 10, g(0, 3) ≤ 3, g(0, 7) ≤ 6. Using these three results together with Lemma 2 we get the chain
of inequalities

g(1008, 2016) ≤ g(16, 32) + g(0, 63)

≤ g(16, 32) + g(0, 3) + g(0, 3) + g(0, 7)

≤ 22.

Applying Lemma 1 with (a, b, d) = (1008, 2016, 4) we get

g(1008, 2020) ≤ g(1008, 2016) + 1 ≤ 23.

Applying Lemma 1 again with (a, b, d) = (1008, 2020, 1) we get

g(1008, 2021) ≤ g(1008, 2020) + 1 ≤ 24.

So g(0, 2021) ≤ 24. As in the previous solutions, this gives g(0, 20212021) ≤ 24 · 2021 = 48504, so
f(N) ≤ 48509.



Topologist’s Trap the Tiger

There is a tiger (which is treated as a point) in the plane that is trying to escape. It starts at the
origin at time t = 0, and moves continuously at some speed k. At every positive integer time t, you can
place one closed unit disk anywhere in the plane, so long as the disk does not intersect the tiger’s current
position. The tiger is not allowed to move into any previously placed disks (i.e. the disks block the tiger
from moving). Note that when you place the disks, you can ’see’ the tiger, (i.e. know where the tiger
currently is).

Your goal is to prevent the tiger from escaping to infinity. In other words, you must show there is
some radius R(k) such that, using your algorithm, it is impossible for a tiger with speed k to reach a
distance larger than R(k) from the origin (where it started).

Find an algorithm for placing disks such that there exists some finite real R(k) such that the tiger
will never be a distance more than R(k) away from the origin.

Scoring

An algorithm that can trap a tiger of speed k will be awarded:

• 1 pt for k < 0.05

• 10 pts for k = 0.05

• 20 pts for k = 0.2

• 30 pts for k = 0.3

• 50 pts for k = 1

• 70 pts for k = 2

• 80 pts for k = 2.3

• 85 pts for k = 2.6

• 90 pts for k = 2.9

• 100 pts for k = 3.9

You are allowed to prove multiple bounds, and will receive points for the best bound that is correctly
proven. Please state which bound you are trying to prove above any proof, or you may not
be awarded points for that bound.

Partial points may be awarded for progress towards the next bound, and partial points may be
deducted for logical flaws or lack of rigor in proofs. To get full points, you must demonstrate that your
algorithm always produces a correct result, and always traps a tiger of the stated speed.



Solutions

Solution for k = 0.05 (10 pts). In this case, we may simply construct a triangle around the tiger:

The distance from the tiger to the nearest point on any circle is 2√
3
− 1 > 0.1, and the tiger has only

2 seconds to move between when we place the first and last circles, so it cannot reach the boundary of
any of the circles before we place them all if it’s speed is ≤ 0.1

2 = 0.05.

Solution for k = 0.2 (20 pts). We can build off of the previous idea, and instead construct a more
efficient enclosure, this time being a square of arbitrarily large size, formed using walls of touching circles:

In this case, if our square consists of 4s circles, the closest point from the tiger to the boundary is
distance s− 1, so we can trap any tiger of speed less than s−1

4s , which is greater than 0.2 for s > 5.



Solution for k = 0.3 (30 pts). If we take the logical continuation of the previous constructions, we
can see that the most efficient shape in terms of

distance to closest point

perimeter

is a circle, so we can construct a large circle by lining the circumference with our small circles:

As we make our outer circle larger, the circumference will become locally flat, so each circle will cover
a length that is arbitrarily close to 2. The total circumference will be 2πR, requiring πR circles, and the
distance to the closest circle will be approximately R − 1, so we can trap any tiger with speed less than
R−1
πR ≈

1
π , which is greater than 0.3, as π < 10

3 .

For the remaining solutions, we will instead consider the tiger to move at a fixed speed of 1, and vary
the radius r of the circles we place. This will make it easier to see how structures we define in one solution
may be applied in another.

The general idea behind the following solution is that we should simply try to place down circles near
the tiger’s current position, and since we are able to build a wall whose path length increases by 1 unit
per second, the tiger should not be able to outrun our wall. The main hurdle with this type of argument,
particularly if applied to a non-square perimeter, is ensuring that the angular speed of the wall can match
that of the tiger, i.e. the tiger cannot gain an advantage by cutting corners and moving further from the
perimeter. We handle this by only considering when the tiger is within a constant distance (h = 32) of
the perimeter. There are simpler constructions that accomplish this task, but it is an important point to
consider and verify in any correct solution.

Solution for r = 1
2 (k = 2) (70 pts). For this radius, we will only place circles at points with integer

coordinates, and solve the strictly harder problem for a tiger on an integer lattice, who can make a king’s
move (to one of 8 adjacent squares) every turn. The general idea will be to adaptively construct a large
square outer perimeter from which the tiger cannot escape.

We will now define a layered barrier of size h to be a square region of height h whose base lies along
our outer perimeter. At the moment the tiger first comes within h of the perimeter, we can define this
region to have the top side centered at the current position of the tiger:



We will pay particular attention to the horizontal mid-line of our region, as well as the side walls.
There are now 3 possibilities for what the tiger can do:

• The tiger exits through the top face. In this case, the tiger is no longer within h of the perimeter,
so we don’t have to do anything.

• The tiger crosses the horizontal mid-line. In this case, since it will take at least h
2 time for the tiger

to reach this line, we can consider the segment of length 2h along the perimeter (centered along the
vertical axis of our region), and uniformly cover 1 in every 4 squares along this segment:

When the tiger finally reaches the mid-line, we can then define a new layered barrier of height h
2 ,

centered at the point where the tiger crosses the line, and repeat this procedure recursively:



Note that each layer will fill 25% of the squares below it’s region, so after 4 such layers, the bottom
area of the innermost region will be completely sealed off, at which point we have no need to
construct further layers. A layered barrier with no sub-layers can exist for h = 4, so in total our
original layered barrier only needs to have height h = 23 · 4 = 32 to ensure that the tiger can never
exit through the bottom face of the region, if it entered through the top and never left through the
side.

Small aside: the reason we covered a segment of length 2h is because the base of every subsequent
region is guaranteed to be within this interval, as shown below:

• The tiger exits through a side wall. In this case, we will simply start placing down consecutive circles
along the direction the tiger exited, until the point where the tiger either re-enters the original region,
or goes further than distance 32 from the perimeter. Since our circles have diameter 1, the tiger
will never be able to exceed the horizontal velocity of our barrier-forming process here, so there is
no risk of the tiger going below the wall:

Finally, we must cover up the corner areas of our square, so that no two layered barriers facing in
perpendicular directions ever intersect, and the above properties always hold. We can easily do this in
8 · 32 moves, which is not an issue if the original square has side length greater than 9 · 32:



We are now able to keep our tiger within this square region indefinitely, by following the procedures
described above.

Solution for r = π
2π+1 + ε (k = 2.3) (80 pts). We will now relax the square grid restriction, and

again try to create a large circular outer perimeter instead (of radius R). For large enough R, the cir-
cumference is locally (approximately) flat, so we may build our layered barriers of height h along the
circumference without issue. In addition, we already established earlier that we can stack as many nested
layers of regions as we need to ensure that the base of the innermost region is fully covered, so this will
no longer be a consideration (even though we will need more than 4 layers for subsequent solutions, as
our circles have become smaller).

Therefore the only limiting factor left is the speed at which we can build sideways, in the event that
the tiger exits the side of our layered barrier, which we will call our “chasing speed”. Our strategy will
now be to use the R − h ≈ R seconds the tiger takes to approach the perimeter as time to uniformly
distribute circles around the perimeter, so that r

π of the circumference is covered by the time the tiger
reaches the boundary. What this effectively does is boost our chasing speed by a factor of π

π−r , since for
every π−r circles along our wall, we now have a pre-placed circle that we no longer need to place ourselves.

As stated, however, this construction has an issue, namely that it is never efficient to have overlapping
circles. In other words, if our goal is to eventually cover our perimeter with N ≈ πR

r tangent circles,
we should only ever place circles at whole number positions along this ring of N circles. Thus, pick an
arbitrary circle along this outer ring to be circle 1, and number these circles in order going clockwise as
1, 2, 3, etc.

Now, define a uniform covering of density d to be a sequence of integers ai, where each term is either
0 if we don’t want to place a circle at position i, and 1 if we do, satisfying a1 = 1 and an+1 = 1 if∑n

i=1 ai ≤ n · d and 0 otherwise. For instance, if d = 1
3 , our sequence will look like

1, 0, 0, 1, 0, 0, 1, 0, 0, . . .

which is simply placing down one out of every 3 circles, while if d = 2
5 , we would get the sequence

1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, . . .

which has 2
5 of the circles covered. Now, we will demonstrate that these uniform coverings have the desired

properties we are looking for.

Lemma 1. For any x < y, the sum ax+1 + ax+2 + · · ·+ ay is at least (y − x)d− 2.

Proof. Let f(n) be the sum of the first n terms of ai. We can show that |f(n)−n·d| < 1, as f(n)−n·d can
increase by at most 1−d each step, and if we ever have f(n−1) > (n−1) ·d, we must have an = 0, so this
difference will never be more than 1− d (and hence 1) in the positive direction. In the negative direction,
note that f(n)−n · d can only decrease by at most d each step, and if we ever have f(n− 1) < (n− 1) · d,
an = 1, so again this difference will never exceed d (and hence 1) in the negative direction. Thus f(x) is
within 1 of x ·d, and f(y) is within 1 of y ·d, so f(y)−f(x) is within 2 of (y−x)d, proving the lemma.

What this tells us is, if we start chasing the tiger down a uniform covering of density d, starting at
an arbitrary point, the worst case scenario is that at some point we are 2 circles behind where we expect
to be. We can easily resolve this by simply reserving the first 4 moves upon entering a layered barrier to
be padding the 2 side exits with 2 extra circles, so that when the chase begins, we have a head start of 2



circles. Of course, this will ever so slightly impact the density of how many circles we can cover along the
bottom of our layered barrier, but again, since we can have arbitrarily many stacked layers, this minor
loss does not affect anything.

Another point worth briefly mentioning is the fact that, in the event that the tiger chases around
the entirety of the circumference at a distance of h from the perimeter (the furthest possible distance
that our strategy will still engage in a chase with), it will have gained a relative advantage of 2πh (the
difference between the length of it’s path and the circumference of the outer circle). However, if we ensure
that our chasing speed s is strictly greater than the tiger’s speed of 1, then for large enough R, this con-
stant gain will be irrelevant compared to the 2πR(s−1) gain we will have acquired by the end of the chase.

It now remains to compute the smallest r for which this construction is feasible. Our speed buff of
π
π−r must bring us above the speed of the tiger, or 1, and since our initial wall building speed is simply

(slightly less than) 2r, we get 2πr
π−r > 1 =⇒ 2πr > π − r =⇒ r(2π + 1) > π =⇒ r > π

2π+1 . We can

translate this into any k value less than 2 + 1
π > 2.3, thus this strategy will allow us to trap a tiger of

speed 2.3.

Remark: One shortcut we can use to compute the appropriate r value for our above solution is to
note that, in the event of the tiger moving directly to the perimeter and then proceeding to chase around
the entirety of the circumference, it will have traveled a distance of R(2π+ 1) in the time that we covered
a barrier of length 2πR, so each of our circles must cover a distance of at least 2π

2π+1 along the wall,
meaning it’s radius must be at least half that length, or π

2π+1 . We will use this shortcut in the following
solutions.

Solution for r = π
2π+2 +ε (k = 2.6) (85 pts). The main limiting factor of our previous optimization

was that we had to uniformly cover an entire circumference. However, we can improve this by only ever
needing to uniformly cover semicircles. First, again define a large outer circle with radius R. However,
this time, we will not do anything at all until the tiger exactly hits the boundary of the outer circle (if this
never occurs, we have trapped the tiger by definition). When this occurs, we will construct a semicircle
(plus an arbitrarily small circular arc) of radius R′ � R centered at the tiger, facing away from our large
circle:

We will now repeat our previous construction of a uniform covering + layered barriers, except only
on this semicircle; if at any point the tiger exits the semicircle and goes back into the original circle, we
simply wait until the tiger exits again, and repeat this strategy indefinitely.

Thus we simply have to compute the smallest radius on which this strategy will work, which, by the
previously mentioned shortcut, will be r > π

2π+2 , as our longest possible wall is of length πR′ along the
circumference, and it will take the tiger R′(1 + π) seconds to perform this chase. Once again, we can
translate this into any k value less than 2 + 2

π > 2.6, so k = 2.6 is attainable.



Solution for r = π
2π+3 + ε (k = 2.9) (90 pts). We will push the previous solution to it’s logical

limit by only relying on uniformly covering arcs of length 120 + ε degrees, which will give us r > π
2π+3

and k = 2.9. Once again, we will construct a large outer circle of radius R, and do nothing until the tiger
hits this perimeter. At this point, we will construct an arc of θ degrees that has radius R′ � R and is
centered at the tiger, and we will use the same strategies of uniform covering and layered barriers from
before:

Now, the only possible way the tiger can try to escape this area is by hitting the missing section of our
arc (the dotted portion above). In this case, if the tiger intersects this arc at the highest possible point,
we will simply construct another arc of the same size on top of the previous arc, centered at the tiger:

For θ > 120, this arc will be tilted more downwards than the previous arc, so if we repeat this
iteratively, eventually our chain of arcs will hit the perimeter of the original circle again, at which point
the tiger has no chance of escaping in this direction:

What happens if the tiger doesn’t pick the highest possible point every time? Well, if the point of
intersection the tiger chooses is within 60 degrees of the highest possible point, we can just construct an
arc centered at the tiger and touching the previous arc in the usual way, and here the angular loss will
be even greater than if the tiger had chosen the highest possible point, so we will only end up hitting the
ground again faster:



And if the tiger tries some more unexpected strategies of choosing points even further away from the
highest possible point, we may simply construct a larger arc, centered at the tiger and with one endpoint
at this highest point, and here the angular loss is even more extreme:

It is clear that these faster angular losses only serve to make our trap work even quicker, so there is
no case where the tiger can escape our boundary here. Indeed, if the tiger causes the angular loss to drop
to the point of exceeding 180 degrees in magnitude, it will still be accomplishing nothing besides boxing
itself in:

Thus we can conclude, using the same calculations as before, that this strategy gives us k = 2.9 as
desired.

Solution for r = 1
4 + ε (k = 3.9) (100 pts). You will notice that the previous 2 solutions, though

attaining better bounds, did not take advantage of the fact that we have R idle seconds spent waiting for



the tiger to approach the boundary. We will take a different approach, and utilize a recursive construction
that allows us to make use of this initial time, and achieve a better bound. Our general setup will be
a “sectioned wall”, which we will define to be a bunch of ”short” vertical walls of length ` along the
circumference of a large outer circle, equally separated by slightly longer gaps of length c · ` for some
c > 1.

Here, a “wall” is simply our uniformly covered layered barrier setup from before, but with two com-
pletely solid walls of height h on the very ends of it, to prevent a ”chase” from leaving the active area
of the wall through any side but the top. Since the length to width ratio of our wall can be arbitrarily
large, these two ends will be negligible for our total calculations.

This sectioned wall will behave similarly to our layered barrier setup, in that, when the tiger approaches
within a set distance from the perimeter, we will preemptively start constructing horizontal walls (using
the same construction as the vertical walls) to cover up each section:

We can easily adapt our old layering protocol to ensure that this will prevent the tiger from ever
breaching the perimeter via travelling directly into it, so once again, the only consideration left is the
“chasing” phase of our strategy, when the tiger horizontally crosses into a vertical “section” that has not
yet been covered:



In this case, the tiger is unable to enter this section through the vertical walls (by definition), so we can
guarantee it is a distance of at least ` from the top of the section. Therefore, if we are able to construct
a wall of length c · ` in ` seconds, we can block off this entire section before the tiger is able to reach the
top of it, again preventing escape. During this time, if the tiger decides to cross through the vertical wall
back into the previous section, we ignore it and don’t follow the protocol of the vertical wall (until we
finish the horizontal wall), since the previous section is by definition already covered, and hence not a risk.

Now, the useful property of this construction is the fact that we were able to create a large “sectioned
wall” of length N · c · ` (where we use N many sections) using N vertical walls of length `. In other words,
this sectioned wall is c times as efficient at covering distances than the vertical walls we built it out of.
Thus, we can repeatedly use this strategy, by building a sectioned wall out of sectioned walls, and so on,
and each time the construction will become c times as efficient, so there is no limit as to how efficient our
construction can be, meaning that we can easily exceed the efficiency of 2π units per second required to
surround a circle with this construction, if we repeat this enough times.

Hence the only limiting factor on our construction is the guarantee that c > 1, so we will now find
when this is possible. Observe that a uniformly covered layered barrier of density d can be pre-built at
a speed of 2r

d units per second, and will work if our individual circles can cover distance 1 − d times as
fast as the tiger, i.e. 2r = 1− d (plus an arbitrarily small value), or d = 1− 2r, so we can cover at most
2r
d = 2r

1−2r = 1
1−2r − 1 distance per second (on average), meaning the necessary c value for our sectioned

wall construction is also at most 1
1−2r − 1 for the initial layer. Thus c > 1 only if we have 1

1−2r − 1 > 1, or

1− 2r < 1
2 , meaning r > 1

4 is required to build our first layer. All subsequent layers will have walls that
can be built c times faster, so if the first layer is possible, all subsequent layers are possible automatically,
hence our construction works for any r > 1

4 , corresponding to any k < 4, allowing us to attain k = 3.9 as
desired.

Remark: When restricted to a square grid, this problem is similar to Conway’s Angels and Demons
problem, where it was shown that it is in fact impossible to trap a king of speed 2 (approximately resem-
bling k = 4 in our setup, though there are some key differences) in this paper:

András Máthé, The angel of power 2 wins, Combin. Probab. Comput. 16(3):363-374, 2007

The above solution for k = 3.9 was inspired by another paper published on the subject:

Kutz, M. and P´or, A. (2005) Angel, Devil, and King. Computing and combinatorics, Lecture Notes
in Comput. Sci. 3595 925–934. Springer, Berlin.

If you found this problem interesting, and would like to read further, these are definitely worth checking
out!


