
Algebra & Number Theory Div. 1 Solutions

1. How many multiples of 12 divide 12! and have exactly 12 divisors?

Proposed by Adam Bertelli

Answer: 6

Solution: The prime factorization of 12! is 210 ·35 ·52 ·7 ·11, and 12 can factor into a product of integers
> 1 in the following ways:

12 = 3 · 2 · 2 = 6 · 2 = 4 · 3.
For a divisor d of 12! with 12 divisors, the set of exponents in its prime factorization must then be one of
{11}, {2, 1, 1}, {5, 1}, {3, 2}. For d to be a multiple of 12, the exponent on 2 must be at least 2 and the
exponent on 3 must be at least 1. The corresponding possibilities for d are

22 · 3 · 5, 22 · 3 · 7, 22 · 3 · 11, 25 · 3, 23 · 32, 22 · 33

for a total of 6 .

2. Suppose there are 160 pigeons and n holes. The 1st pigeon flies to the 1st hole, the 2nd pigeon flies to
the 4th hole, and so on, such that the ith pigeon flies to the (i2 mod n)th hole, where k mod n is the
remainder when k is divided by n. What is minimum n such that there is at most one pigeon per hole?

Proposed by Christina Yao

Answer: 326

Solution: Note that a2 ≡ b2 mod n iff (a + b)(a − b) ≡ 0 mod n. Equivalently, n cannot be a factor
of (a+ b)(a− b) for all distinct a, b ≤ 160. This leaves two possibilities:

• n = p for p > 320.

• n = 2p for p > 160, since a+ b = p =⇒ a− b is odd, so the product cannot be divisible by 2p.

By checking numbers above 320, we can see that the first number satisfying one of these conditions is
n = 2 · 163 = 326 .

3. Let a and b be complex numbers such that (a+ 1)(b+ 1) = 2 and (a2 + 1)(b2 + 1) = 32. Compute the sum
of all possible values of (a4 + 1)(b4 + 1).

Proposed by Kyle Lee

Answer: 1160

Solution: Rewrite the first equation as a+ b = 1− ab, so that

a2 + b2 = (a+ b)2 − 2ab

= (1− ab)2 − 2ab

= 1− 4ab+ (ab)2.

Therefore, 1− 4ab+ 2(ab)2 = 31, so ab = −3 or 5. Now,

(a4 + 1)(b4 + 1) = (ab)4 + a4 + b4 + 1

= (ab)4 + (a2 + b2)2 − 2(ab)2 + 1

= (ab)4 + (31− (ab)2)2 − 2(ab)2 + 1.



If ab = −3, the expression evaluates to 548. However, if ab = 5, the expression evaluates to 612, so the
answer is 548 + 612 = 1160 .

4. Let f(x) = x2

8 . Starting at the point (7, 3), what is the length of the shortest path that touches the graph
of f , and then the x-axis?

Proposed by Sam Delatore

Answer: 5
√

2− 2

Solution: The key to this problem is that, for any point on a parabola, it is equidistant from the focus
and the directrix. From this, it’s not hard to see that the shortest path from (7, 3) to the parabola to
the directrix has the same length as the segment connecting (7, 3) to the focus. Here, the focus of this
parabola is (0, 2), and the directrix is the line y = −2, which makes that distance equal to 5

√
2. Since the

desired length is two less than that of the shortest path from (7, 3) to the parabola to the line y = −2,

we get an answer of 5
√

2− 2 .

5. Suppose f is a degree 42 polynomial such that for all integers 0 ≤ i ≤ 42,

f(i) + f(43 + i) + f(2 · 43 + i) + · · ·+ f(46 · 43 + i) = (−2)i

Find f(2021)− f(0).

Proposed by Adam Bertelli

Answer: 343 − 243 − 1

Solution: Let g(i) denote the LHS. We want to find g(43)− g(0). Define h(i) =
∑42
k=0

(
i
k

)
(−3)k, which

is a degree 42 polynomial. By the binomial theorem, for 0 ≤ i ≤ 42, we have h(i) = (−2)i. Since g and h
agree at these 43 values, we have g = h. We compute

h(43) =

42∑
k=0

(
43

k

)
(−3)k = (−2)43 − (−3)43

and h(0) = 1, so g(43)− g(0) = h(43)− h(0) = 343 − 243 − 1 .

6. Find the remainder when ⌊
149151 + 151149

22499

⌋
is divided by 104.

Proposed by Vijay Srinivasan

Answer: 7800

Solution: Let p = 149, q = 151, which are both prime. Observe that 22499 = 22500− 1 = pq. We have
pq ≡ p mod q and qp ≡ q mod p, so pq + qp ≡ p+ q mod pq, and thus

N =
pq + qp − p− q

pq
.

With k = 150, we have (k − 1)k+1 ≡ k(k + 1) − 1 mod k2 and (k + 1)k−1 ≡ k(k − 1) + 1 mod k2, so
adding these gives

pq + qp = (k − 1)k+1 + (k + 1)k−1 ≡ 0 mod k2.



It follows that pq + qp ≡ 0 mod 54, so N ≡ p+ q ≡ 300 mod 54.

Since, modulo 16, everything has order at most 4, we see that pq + qp − p − q ≡ p3 − p mod 16. Since
p ≡ 5 mod 16, we get that this expression is 8 mod 16. Since pq is odd, N ≡ 8 mod 16 as well.

So for some integer m, we have 8 ≡ 54m+ 300 ≡ m+ 12 mod 16, so m ≡ −4 mod 16. So the answer is
−4 · 54 + 300 ≡ −2200 mod 104, for a final answer of 104 − 2200 = 7800 .

7. As a gift, Dilhan was given the number n = 11 · 22 · · · 20212021, and each day, he has been dividing n by
2021! exactly once. One day, when he did this, he discovered that, for the first time, n was no longer an
integer, but instead a reduced fraction of the form a

b . What is the sum of all distinct prime factors of b?

Proposed by Adam Bertelli

Answer: 354

Solution: First let us only consider primes p >
√

2021. Note that

νp(n) = p+ 2p+ · · ·+ dpp = pdp
dp + 1

2

where we define dk as the largest integer such that dkk < 2021, while

νp(2021!) = 1 + 1 + · · ·+ 1 = dp

thus
νp(n)

νp(2021!)
=

p(dp+1)
2 , or half of the least multiple of p larger than 2021. Such a number is at least 2022,

and since 337 >
√

2021 is a prime dividing 2022, it follows that 1011 is an attainable lower bound, meaning

that after 1012 divisions, n is no longer an integer. It remains to find all p such that
νp(n)

νp(2021!)
< 1012.

We now extend our consideration to all primes p. For any given p, the final value of
νp(n)

νp(2021!)
will be a

weighted average of the summations given by taking one factor of p from each multiple of p, one factor of
p from each multiple of p2, and so on, i.e.

νp(n)

νp(2021!)
=
pdp

dp+1
2 + p2dp2

dp2+1

2 + p3dp3
dp3+1

2 + · · ·
dp + dp2 + dp3 + · · ·

Clearly pk(dpk + 1) ≥ p(dp + 1), as every multiple of pk is a multiple of p, thus in order for a prime to

possibly have
νp(n)

νp(2021!)
< 1012, we must have p|2022 or p|2023, giving p = 2, 3, 7, 17, 337 as our possible

values. We can rule out 2, 3, 7 fairly quickly by computing prefix sums for our numerator and denominator

until the weighted average exceeds 1012, and for 17, note that 172|2023 and 173 > 2021, hence ν17(n)
ν17(2021!)

is exactly 2023
2 , giving our final answer as 17 + 337 = 354 .

8. There are integers v, w, x, y, z and real numbers 0 ≤ θ < θ′ ≤ π such that

cos 3θ = cos 3θ′ = v−1, w + x cos θ + y cos 2θ = z cos θ′.

Given that z 6= 0 and v is positive, find the sum of the 4 smallest possible values of v.

Proposed by Vijay Srinivasan

Answer: 36

Solution: Let α1 = 2 cos θ, α2 = 2 cos θ′; the constraint θ, θ′ ∈ [0, π] ensures that α1 6= α2. By triple-
angle formulas, α1 and α2 are roots to the equation f(x) = x3−3x− 2

v = 0. Let α3 be the third root of f .



The condition with w, x, y, z ensures that α2 ∈ F := Q(α1), where Q(α1) denotes the set of rational linear
combinations of 1, α1, α

2
1. This implies F = Q(α2) = Q(α3). We compute f(x) = (x− α1)g(x) where

g(x) = x2 + α1x+ α2
1 − 3 =

(
x+

α1

2

)2
+

3α2
1 − 12

4
.

Since α2 and α3 are roots of this equation, we conclude that 12− 3α2
1 is a square in F . Likewise we get

that 12− 3α2
2 and 12− 3α2

3 are squares in F . Now observe

3∏
k=1

(12− 3α2
i ) = −33f(−2)f(2) = 36(3− 3v−2)

3∏
k=2

(12− 3α2
i ) = 32g(−2)g(2) = 9(α− 1)2(α+ 1)2

so 12−3α2
1 is a square in F if and only if 3−3v−2 is a square in F . But 3−3v−2 is a rational number, and

thus 3− 3v−2 is a square in F iff it is a square in Q (otherwise its square root would generate a degree 2
subextension of F ). So it suffices to determine the positive integers v for which 3v2−3 is a perfect square.

Setting 3v2 − 3 = k2, we see that k must be a multiple of 3 so we can set k = 3k′ and get v2 − 3k′2 = 1.
This is a Pell equation with solution (1,0) and smallest nontrivial solution (v, k′) = (2, 1), so all other
solutions are given by the coefficients of 1 and

√
3 in (2 +

√
3)m for m ≥ 1. Computing recursively, we get

the smallest four values of v are 1, 2, 7, 26, for a final answer of 1 + 2 + 7 + 26 = 36 .

Remark: This solution illustrates the general fact that an irreducible cubic has Galois group Z/3Z if and
only if its discriminant is a square in the base field.


