
Combinatorics & Computer Science

1. The intramural squash league has 5 players, namely Albert, Bassim, Clara, Daniel, and Eugene. Albert
has played one game, Bassim has played two games, Clara has played 3 games, and Daniel has played
4 games. Assuming no two players in the league play each other more than one time, how many games
has Eugene played?

Proposed by Daniel Li

Answer: 2

Solution. Daniel must play each of Albert, Bassim, Clara, and Eugene; this uses up the only game
Albert plays, and so Clara must also play Bassim and Eugene. But now Bassim has played two games,
and so all conditions are satisfied. Thus Eugene has played 2 games.

2. David is taking a true/false exam with 9 questions. Unfortunately, he doesn’t know the answer to any
of the questions, but he does know that exactly 5 of the answers are True. In accordance with this,
David guesses the answers to all 9 questions, making sure that exactly 5 of his answers are True. What
is the probability he answers at least 5 questions correctly?

Proposed by David Altizio

Answer: 9
14

Solution. Without loss of generality, assume the first five questions have answer True and the last
four questions have answer False; this has no bearing on the answer to the question.

Suppose David answers k of the True questions with answer True. Then David has used 5 − k of his
allotted False answers, so 4 − (5 − k) = k − 1 of the last four questions are answered False. Thus,
David answered 2k − 1 of the questions correctly; in turn, he answers at least 5 questions correctly if
and only if k ≥ 3.

Finally, the number of ways for David to answer k of the True questions with True is
(
5
k

)(
4

k−1
)
, so the

desired probability is (
5
3

)(
4
2

)
+
(
5
2

)(
4
1

)
+
(
5
1

)(
4
0

)(
9
5

) =
81

126
=

9

14
.

3. Consider a 1-indexed array that initially contains the integers 1 to 10 in increasing order.

The following action is performed repeatedly (any number of times):

def action():

Choose an integer n between 1 and 10 inclusive

Reverse the array between indices 1 and n inclusive

Reverse the array between indices n+1 and 10 inclusive (If n = 10, we do nothing)
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How many possible orders can the array have after we are done with this process?

Proposed by Dilhan Salgado

Answer: 20

Solution. The move is equivalent to reversing the array and cycling the elements. For the final
position, there are 2 options for the direction of the array and 10 options for the first element (which
together uniquely determine the entire array). Thus there are 2 · 10 = 20 total orderings.

4. The continent of Trianglandia is an equilateral triangle of side length 9, divided into 81 triangular
countries of side length 1. Each country has the resources to choose at most 1 of its 3 sides and build
a “wall” covering that entire side. However, since all the countries are at war, no two countries are
willing to have their walls touch, even at a corner. What is the maximum number of walls that can be
built in Trianglandia?

Proposed by Adam Bertelli

Answer: 27

Solution. We claim the answer is 27 .

Note that there are 55 total “corners” of individual triangular countries, and each wall takes up exactly
two corners. In addition, no two walls can share a corner; thus there are at most

⌊
55
2

⌋
= 27 walls. To

construct this, we can simply start at the topmost point, and follow a path that “snakes” through each
row from top to bottom, alternating left and right on each row. If we then turn every other segment
in this path into a wall, since this path covers every point, we will end up with 27 walls as desired.

5. Seven cards numbered 1 through 7 lay stacked in a pile in ascending order from top to bottom (1 on
top, 7 on bottom). A shuffle involves picking a random card of the six not currently on top and putting
it on top. The relative order of all the other cards remains unchanged. Find the probability that, after
10 shuffles, 6 is higher in the pile than 3.

Proposed by Sam Delatore

Answer: 310−210
2·310 OR 58025

118098

Solution. If neither a three or six is ever picked, the three will be on top of the six so the condition

will never happen. This occurs with probability
(
4
6

)10
= 210

310 . Over all cases where at least one is
picked, the probability is 1

2 by symmetry. Thus the answer is

1

2

(
1− 210

310

)
=

310 − 210

2 · 310
.

6. The nation of CMIMCland consists of 8 islands, none of which are connected. Each citizen wants to
visit the other islands, so the government will build bridges between the islands. However, each island
has a volcano that could erupt at any time, destroying that island and any bridges connected to it.
The government wants to guarantee that after any eruption, a citizen from any of the remaining 7
islands can go on a tour, visiting each of the remaining islands exactly once and returning to their
home island (only at the end of the tour). What is the minimum number of bridges needed?

Proposed by Daniel Li

Answer: 12

Solution. The critical claim is that every island must have at least 3 bridges.
First note that for each island, any tour through it requires the use of at least 2 distinct bridges.
Assume for the sake of contradiction that some island I has at most 2 bridges. Then consider the case
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where one of the islands adjacent to I is destroyed. Then there is only one remaining bridge connected
to I, so we cannot form a complete tour.

Now as each island has at least 3 bridges, the total number of “bridge ends” must be at least 3 ·8 = 24,
and as each bridge provides exactly 2 “bridge ends” there must be at least 24

2 = 12 bridges.

The following construction shows that 12 is acheivable.

7. Consider a complete graph of 2020 vertices. What is the least number of edges that need to be marked
such that each triangle (3-vertex subgraph) has an odd number of marked edges?

Proposed by Joshua Abrams

Answer: 1019090

Solution. Suppose we have at least 2 connected components of marked edges. If we choose two
points in a connected component of marked edges, and a third point outside of this connected compo-
nent, then no edge containing the third point can be marked, thus the edge between the first two must
be marked, i.e. any connected component must be a complete graph. In addition, we cannot have more
than 3 connected component, otherwise we could pick one point from each and get a triangle with no
marked edges. Thus in this case, we have

(
n
2

)
+
(
2020−n

2

)
edges, which is minimized at n = 1010 by

convexity of the function n(n−1)
2 .

Otherwise, if there is only one connected component, suppose some two points, A and B, have an
unmarked edge between them. Then, every other point must share a marked edge with exactly one of
these two (because the triangle among all 3 must have one marked edge). In addition, if some point
P connects to A, and some point Q connects to B, P and Q cannot share a marked edge by triangle
APQ. Thus we actually end up with (at least) two disconnected components, those adjacent to A and
those adjacent to B, contradiction. Therefore we could not have started with a missing edge, so our
graph was actually the complete graph, giving us

(
2020
2

)
marked edges.

The first case is clearly smaller, so our answer is

2

(
1010

2

)
= 1010 · 1009 = 1019090 .

8. Catherine has a plate containing 300 circular crumbling mooncakes, arranged as follows:
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(This continues for 100 total columns). She wants to pick some of the mooncakes to eat, however
whenever she takes a mooncake all adjacent mooncakes will be destroyed and cannot be eaten. Let
M be the maximal number of mooncakes she can eat, and let n be the number of ways she can pick
M mooncakes to eat (Note: the order in which she picks mooncakes does not matter). Compute the
ordered pair (M , n).

Proposed by Dilhan Salgado

Answer: (100, F104 + 1223)

Solution. First, note that M = 100. This is certainly achievable: take the first and third mooncake
in the odd numbered columns. In any two adjacent columns (i, i+1), she can take at most 2 mooncakes
so this gives the desired bound.

In fact, every configuration of M mooncakes satisfies that for all (i, i+ 1) with i odd Catherine takes
exactly 2 mooncakes (this is both necessary and sufficient).

Let fa,b,n denote the number of ways to eat all the mooncakes when in columns (1, 2) we eat cakes a
and b (where the cakes are numbered 1, 2, . . . , 6 in order left to right, top to bottom), and there are n
pairs of columns. Notice that fa,b,1 = 1 for all a, b. Then the final answer is f50 = f1,4,50 + f1,5,50 +
f1,6,50 + f2,5,50 + f2,6,50 + f3,6,50.

Note that the following are true:

f1,4,n = f1,4,n−1 + f1,6,n−1 + f2,6,n−1

f1,5,n = fn−1

f1,6,n = f1,4,n−1 + f1,6,n−1 + f2,6,n−1 + f3,6,n−1

f2,5,n = f2,5,n−1 + f2,6,n−1

f2,6,n = f2,6,n−1

f3,6,n = f1,4,n−1 + f1,6,n−1 + f2,6,n−1 + f3,6,n−1

Since f2,6,1 = 1 this implies that f2,6,n = 1. From f2,5,n = f2,5,n−1 +1 we then have f2,5,n = n. Finally,
f1,6,n = f3,6,n and f1,4,n = f1,6,n − f1,6,n−1.

This implies that
f1,6,n = 3f1,6,n−1 − f1,6,n−2 + 1

Inductively, this gives f1,6,n = F2n+1 − 1 where Fn are the Fibonacci numbers (one way to see this is
that the roots of the characteristic polynomial are the squares of those for the Fibonacci recurrence).
Hence, f1,4,n = F2n.

Finally,

fn = fn−1 + F2n + 2F2n+1 + n− 1 = fn−1 + F2n+3 + n− 1 =⇒ fn = F2n+4 +

(
n

2

)
− 2

where the last implication follows from the base case f1 = 6. This gives f50 = F104 + 1223, and so the

desired answer is (100, F104 + 1223) .

9. Let Γ = {ε, 0, 00, . . .} be the set of all finite strings consisting of only zeroes. We consider six-state
unary DFAs D = (F, q0, δ) where F is a subset of Q = {1, 2, 3, 4, 5, 6}, not necessarily strict and
possibly empty; q0 ∈ Q is some start state; and δ : Q → Q is the transition function. For each such
DFA D, we associate a set FD ⊆ Γ as the set of all strings w ∈ Γ such that

δ(· · · (δ(q0)) · · · )︸ ︷︷ ︸
|w| applications

∈ F,

We say a set D of DFAs is diverse if for all D1, D2 ∈ D we have FD1
6= FD2

. What is the maximum
size of a diverse set?
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Proposed by Misha Ivkov

Answer: 306

Solution. Define the minimal DFA D′ associated with a language L as the unique DFA on a minimal
number of states with L(D′) = L. We are guaranteed such a DFA by Myhill-Nerode, whose proof we
defer to the first ever CMIMC Power Round.

Note that for any DFA D on < n states, we can just add some unreachable states so that it has size
exactly n. Hence we just need to count minimal DFAs of size at most n.

First, let us characterize this set. Since every node has exactly 1 out-transition, we can view a unary
DFA as being a linked list where it is possible for there to be a cycle. Consider the loop, and associate
a binary word v with it where vi = 1 if the ith node of the loop is in F and 0 otherwise. Then to be
a minimal DFA, we must have that this loop is minimal in the sense that there does not exist x such
that v = xk for k ≥ 2. Certainly, we also cannot have any unreachable nodes in our linked list. There
is only one other constraint: the end of the loop cannot have the same output as the node directly
before the loop. Otherwise, we could simply redirect the second to last node in the loop to the one
before the loop.

These three conditions characterize minimal DFAs, so all we have left to do is count. Let f(n) denote
the number of “minimal” (or “primitive”, as often refered to in the literature) words v of length n.
This is derived in CMIMC 2019 Combo/CS #7, but we will not use its exact value until the end.

Note that the number of minimal DFAs on n states is

m(n) = f(n) +

n−1∑
i=1

f(i)2n−i−1

by utilizing the last constraint and reindexing the second sum. Hence the number of minimal DFAs
on at most n states is

M(n) =

n∑
k=1

(
f(k) +

k−1∑
i=1

f(i)2k−i−1

)
=

n∑
k=1

f(k)2n−k.

Now recalling that

f(n) =
∑
d|n

µ
(n
d

)
2d

and computing gives M(6) = 306 .

10. Define a string to be doubly palindromic if it can be split into two (non-empty) parts that are read
the same both backwards and forwards. For example hannahhuh is doubly palindromic as it can be
split into hannah and huh. How many doubly palindromic strings of length 9 using only the letters
{a, b, c, d} are there?

Proposed by Dilhan Salgado

Answer: 8104

Solution. First consider all possible splitting points. We can split after the first i characters for

1 ≤ i ≤ 8. The number of palindromes of length l is 4d
l
2e. Thus the total number of possible double

palindromes for each splitting point will be 4d
i
2e+d 9−i

2 e = 45. (Note exactly one of the divisions will
round up). Thus the initial answer is 8 · 45 = 8192.

However, we have over-counted strings such as ‘aaaaaaaaa’ which can be split in multiple places.
Assume that a string s can be split in two places. Thus s = xyz where x, yz are palindromes, and xy, z
are palindromes. Let v′ denote the reverse of v for arbitrary v. We thus know: x = x′, yz = z′y′, xy =
y′x′, z = z′ We can then see zxy = zy′x′ = z′y′x = yzx, so zxy = yzx which is a non-trivial cyclic
shift. Thus we know that s is a nontrivial cyclic-shift of itself. As the length of s is 9, this implies
s = ttt for some t of length 3. We now case on t.
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• t = aaa (and symmetric - 4 total ways) → 8 splitting points, overcount of 7.

• t = aab (and symmetric - 12 total ways) → 3 splitting points, overcount of 2.

• t = aba (and symmetric - 12 total ways) → 2 splitting points, overcount of 1.

• t = abb (and symmetric - 12 total ways) → 3 splitting points, overcount of 2.

• t = abc (and symmetric - 12 total ways) → 0 splitting points, no overcount.

So, the total overcount is 4 · 7 + 12 · 2 + 12 · 1 + 12 · 2 = 88. Subtracting from 8192 gives the desired
answer of 8104 .

11. (Estimation) Max flips 2020 fair coins. Let the probability that there are at most 505 heads be p.
Estimate − log2(p) to 5 decimal places, in the form x.abcde where x is a positive integer and a, b, c, d, e
are decimal digits.

Proposed by Misha Ivkov

Answer: (5.3605584085, 117)
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