
Algebra and Number Theory Solutions

1. Suppose x is a real number such that x2 = 10x+ 7. Find the unique ordered pair of integers (m,n) such
that x3 = mx+ n.

Proposed by Vijay Srinivasan

Answer: (107, 70)

Solution. We have

x3 = x · x2 = x(10x+ 7) = 10x2 + 7x = 10(10x+ 7) + 7x = 107x+ 70

giving the answer (107, 70) . If there were another possible ordered pair, this would imply x is rational,

but since (x− 5)2 = 32, this is clearly not the case.

2. Find the unique real number c such that the polynomial x3 + cx+ c has exactly two real roots.

Proposed by Vijay Srinivasan

Answer: − 27
4

Solution. If there are two real roots, then the third root must also be real, and one of the roots is a
double root. Thus we have

x3 + cx+ c = (x− a)2(x− b) = x3 − (2a+ b)x+ (a2 + 2ab)x− a2b

This gives b = −2a, equating the other coefficients gives c = −3a2 and c = 2a3. So −3a2 = 2a3, giving
a = 0 or a = −3/2. If a = 0, then b = 0, giving only one real root, so this can’t occur. So a = −3/2 and

c = −27/4 .

3. Call a number “Sam-azing” if it is equal to the sum of its digits times the product of its digits. The only
two three-digit Sam-azing numbers are n and n+ 9. Find n.

Proposed by Sam Delatore

Answer: 135

Solution. We present two solutions.

First solution, by Partial Guesswork Observe that one of the two Sam-azing numbers, either n or
n + 9, is odd. Since each of the digits of this number divides it, it follows that each of the digits is odd.
Testing a few small cases yields that 135 is Sam-azing.

Thus, the other Sam-azing number is either 126 or 144; of these, only 144 works, so n = 135 .

Solution 2, by Direct Reasoning First observe that no positive Sam-azing integer can have a zero
digit; call this observation (†). With this in mind, we make two crucial observations:

• Notice that n cannot have a units digit of either zero or one (the first one contradicts (†) for n, the
second contradicts (†) for n + 9). Thus n has a units digit of at least two. As a consequence, the
units and tens digits of n and n+ 9 are both different.

• Let a be the hundreds digit of n. Then

n+ 9 /∈ [100(a+ 1), 100(a+ 1) + 9],

since otherwise n + 9 has a zero digit, contradicting (†). It follows that n + 9 ≤ 100a + 90. As a
consequence, the hundreds digits of n and n+ 9 are identical.



Combining both observations yields that

n = abc and n+ 9 = a(b+ 1)(c− 1)

for some nonzero digits a, b, and c.

So
9 = a(b+ 1)(c− 1)(a+ b+ c)− abc(a+ b+ c) = a(c− b− 1)(a+ b+ c).

Since a, b, and c are positive, and furthermore c > 1, we must have a + b + c ≥ 4, so a + b + c = 9. It
follows that a = c− b− 1 = 1. Solving this system of equations yields b = 3 and c = 5, so n = 135 .

4. For all real numbers x, let P (x) = 16x3− 21x. What is the sum of all possible values of tan2 θ, given that
θ is an angle satisfying

P (sin θ) = P (cos θ)?

Proposed by David Altizio

Answer: 231
25

Solution. Rewrite the given equality as

16 sin3 θ − 21 sin θ = 16 cos3 θ − 21 cos θ, or 16(sin3 θ − cos3 θ) = 21(sin θ − cos θ).

If sin θ = cos θ, equality is trivially satisfied, and hence tan θ = 1. Otherwise, we may divide both sides
by sin θ − cos θ to get

21 = 16(sin2 θ + sin θ cos θ + cos2 θ) = 16(1 + sin θ cos θ), or sin θ cos θ = 5
16 .

Now remark that there is one positive solution (x, y) = (sin θ, cos θ) to the system of equations x2 +y2 = 1
and xy = 5

16 up to permutation. Thus the two values of tan θ are x
y and y

x , and so the sum of the values

of tan2 θ is
x2

y2
+
y2

x2
=

(x2 + y2)2

(xy)2
− 2 =

256

25
− 2 =

206

25
.

Pulling the two cases together gives the requested answer of 231
25 .

5. Let f(x) = 2x+3x. For how many integers 1 ≤ n ≤ 2020 is f(n) relatively prime to all of f(0), f(1), . . . , f(n−
1)?

Proposed by Adam Bertelli

Answer: 11

Solution. We claim that f(n) is relatively prime to all of f(0), . . . , f(n− 1) if and only if n is a power

of 2 (Note that 20 = 1 is a power of two). Since 210 = 1024 while 211 = 2048, we get a total of 11 values
of n.

We first prove the “only if” direction. Suppose n is not a power of 2, so that n = 2k ·m for some odd
integer m. Observe that

f(n) = 22
k·m + 32

k·m = (22
k

)m + (32
k

)m = (22
k

+ 32
k

) ·M = f(2k) ·M,

where M is some positive integer depending on k and m. Thus f(2k) is not relatively prime to f(n),
implying n does not satisfy the condition.

The “if” condition is somewhat more difficult. The solution proceeds in two lemmas.

Lemma 1. For any positive integers m and n with m < n,

gcd(22
m

+ 32
m

, 22
n

+ 32
n

) = 1.



Proof. Suppose for contradiction that the greatest common divisor d is not 1, and let p be a prime dividing
d. Observe that 22

m ≡ −32
m

(mod p), and squaring both sides repeatedly eventually yields 22
n ≡ 32

n

(mod p). (In particular, the negative sign goes away since we need to square at least once.) Thus, p
divides both 32

n

+ 22
n

and 32
n − 22

n

, implying that p divides both 32
n

and 22
n

. This is impossible.

Lemma 2. Suppose a and b are nonnegative integers such that there exists a prime p dividing both f(a)
and f(b). Then p divides either 3d + 2d or 3d − 2d, where d = gcd(a, b).

Proof. Without loss of generality let a > b, so that a = bq + r by the Division Algorithm. Then, since p
divides both 3a + 2a and 3b + 2b, it must also divide

3a + 2a − 2r(3bq + 2bq) = 3bq(3r − 2r).

But one can check p 6= 3, so p divides 3r − 2r. Continuing inductively (with appropriate sign changes
whenever necessary) proves the result.

Now suppose n = 2r for some nonnegative integer k, and let m < n. let p be a prime dividing both f(n)
and f(m). Observe that gcd(n,m) = 2s for some nonnegative integer s, so by Lemma 2, p divides either
32

s

+ 22
s

or 32
s − 22

s

. The former case is immediately ruled out by Lemma 1. For the latter case, we
instead note the factorization

32
s

− 22
s

= (3 + 2)(32 + 22) · · · (32
s−1

+ 22
s−1

).

Since p divides this product, p must divide 32
t

+ 22
t

for some t ≤ s− 1. Again, this is a contradiction by
Lemma 1. Hence such a prime does not exist and gcd(f(n), f(m)) = 1. Since m was arbitrary, we deduce
that n works.

6. Find all pairs of integers (x, y) such that x ≥ 0 and

(6x − y)2 = 6x+1 − y.

Proposed by Dilhan Salgado

Answer: (1, 0), (1, 11), (4, 1215), (4, 1376)

Solution. Let a = 6x − y. Then

a(a− 1) = a2 − a = 6x+1 − y − 6x + y = 5 · 6x = 2x · 3x · 5.

Notice that 2x divides a(a−1). However, a and a−1 are relatively prime, so by Euclid’s Lemma, 2x must
divide either a or a− 1. Similarly, 3x must also divide either a or a− 1. This yields two cases.

Case 1: 2x and 3x both divide the same factor. Then {a, a− 1} = {6x, 5}, and so 6x and 5 must
differ by 1. The only way this can happen is if x = 1; in this case, a is either −5 or 6.

Case 2: 2x and 3x divide different factors. In this case, we need 5 · 2x and 3x to differ by 1. (The
other case is clearly not possible, since 2x and 3x · 5 always differ by greater than 1.) The only way this
can happen is if x = 4; in this case, a = 81 or a = −80.

Solving both cases we get the 4 solutions (1, 0), (1, 11), (4, 1215), and (4, 1376) .

7. Compute the positive difference between the two real solutions to the equation

(x− 1)(x− 4)(x− 2)(x− 8)(x− 5)(x− 7) + 48
√

3 = 0.

Proposed by Misha Ivkov



Answer:
√

25 + 8
√

3

Solution. We proceed by making a series of substitutions. It is possible to solve this problem with
fewer substitutions, but we choose to present the solution below for motivational purposes.

First remark that, by grouping factors together, the equation rewrites as

(x2 − 9x+ 8)(x2 − 9x+ 14)(x2 − 9x+ 20) + 48
√

3 = 0.

Now, to exploit symmetry, set z = x2 − 9x+ 14; then the equation becomes

z(z − 6)(z + 6) + 48
√

3 = 0.

Now let w = z
6 (to divide out the common factors of 6) to get

w3 − w +
2

3
√

3
= 0

Finally, let v = w
√

3, so that then the equation becomes

v3 − 3v + 2 = 0.

By Rational Root Theorem, the solutions are v = −2 and v = 1. Propagating this information up gives
the desired solution.

8. Let f : N→ (0,∞) satisfy
∏

d|n f(d) = 1 for every n which is not prime. Determine the maximum possible

number of n with 1 ≤ n ≤ 100 and f(n) 6= 1.

Proposed by Vijay Srinivasan

Answer: 82

Solution. Let g(n) = log f(n) and h(n) =
∑

d|n g(d); the condition is equivalent to h(n) = 0 for every
n which is not prime. By Möbius inversion,

g(n) =
∑
d|n

µ(d)h
(n
d

)
.

We can make the above term nonzero as long as there is some d for which d is squarefree (so that µ(d) is
nonzero) and n

d is prime. To guarantee that g(n) is nonzero whenever possible, make the values of h at
primes Q-linearly independent (e.g. h(p) =

√
p for primes works). Therefore we can have f(n) 6= 1 if and

only if n is the product of a prime and a squarefree number.

To count the number of n for which f(n) 6= 1, we will instead count the number of n for which f(n) = 1.
Note that f(1) = 1. Next, if n is divisible by the cube of a prime, then f(n) = 1. This includes multiples
of 8 and 27 of which there are 12 + 3 = 15 (with no overlap). The remaining cases are numbers which are
divisible by the squares of two distinct primes but not divisible by the cube of a prime. For n ≤ 100, this
only includes 2232 = 36 and 2252 = 100. The total number of n for which f(n) = 1 is 1 + 15 + 2 = 18, so

there are 82 values of n for which f(n) 6= 1.

9. Let p = 10009 be a prime number. Determine the number of ordered pairs of integers (x, y) such that
1 ≤ x, y ≤ p and x3 − 3xy + y3 + 1 is divisible by p.

Proposed by Vijay Srinivasan

Answer: 30024

Solution. Note that if ω is a primitive cube root of unity, then over reals we have the factorization

x3 + y3 + z3 − 3xyz = (x+ y + z)(x+ ωy + ω2z)(x+ ω2y + ωz).



Since 10009 ≡ 1 (mod 3), there exists a primitive cube root of unity modulo 10009 (which we will also
denote ω), and the same factorization applies. Specializing to z = 1 yields

x3 + y3 + 1− 3xy = (x+ y + 1)(x+ ωy + ω2)(x+ ω2y + ω).

These are three linear expressions, and each pair of an equation and a value of y results in a unique value
of x to make the expression 0. For each pair of linear expressions, there is a unique value of y for which
the solution for x will coincide. We may check that these overlaps occur at y = 1, ω, ω2, so the number of
pairs (x, y) is 3p− 3 = 30024 .

10. We call a polynomial P square-friendly if it is monic, has integer coefficients, and there is a polynomial
Q for which P (n2) = P (n)Q(n) for all integers n. We say P is minimally square-friendly if it is square-
friendly and cannot be written as the product of nonconstant, square-friendly polynomials. Determine
the number of nonconstant, minimally square-friendly polynomials of degree at most 12.

Proposed by Vijay Srinivasan

Answer: 18

Solution. Say P is square-friendly. We claim that each irreducible factor of P must be either x or a
cyclotomic polynomial Φn for some n. Let α be a nonzero root of P . Note that the condition on P means
that α2n is a root for each positive integer n. If all of these are unique, then P has infinitely many roots,
which is impossible, so α2m = α2n for some m,n; in particular α is a root of unity. It follows that P is
uniquely expressible as a product of cyclotomic polynomials and a power of x. Further, it is clear that if
P is minimally square-friendly, then there are no powers of x unless P (x) = x.

We now claim that if P is square-friendly and Φ2k divides P , then so does Φk. Indeed, the roots of Φ2k

are the primitive 2k-th roots of unity; their squares are then the primitive k-th roots of unity and so
necessarily Φk divides P .

This shows that if n = 2km where m is odd, and Φn divides P , so does the product

Ψn := ΦmΦ2mΦ4m · · ·Φ2k−1mΦ2km=n.

We claim that Ψn is square-friendly. For this, we will need two facts, collected in the following lemma.

Lemma: If b is odd, then Φb(x
2) = Φb(x)Φ2b(x) and if b is even, then Φb(x

2) = Φ2b(x).

Proof: When b is even, the map α 7→ α2 is easily seen to be 2-to-1 from the roots of Φ2b to the roots of
Φb, so this finishes the even case. When b is odd, this map is instead 1-to-1, so that Φ2b(x) | Φb(x

2). We
also have that the map α 7→ α2 is a bijection on the roots of Φb since b is odd, so Φb | Φb(x

2). Since Φb

and Φ2b are coprime, we see by comparing degrees that Φb(x)Φ2b(x) = Φb(x
2). Q.E.D.

Given the lemma, we see that

Ψn(x) = Φm(x2)Φ2m(x2) · · ·Φ2k−1m(x2)

and so we certainly have Ψn(x) | Ψn(x2). In fact, we see that Ψn(x2) = Ψn(x)Φ2n(x).

We now show that any minimally square-friendly P (besides P (x) = x) is equal to some Ψn. Let n be
the largest integer for which Φn | P . Then our previous results show that Ψn | P and that Ψn(x2) =
Ψn(x)Φ2n(x). So if P = ΨnQ then we have that P (x2) = Ψn(x)Φ2n(x)Q(x2). It follows that

Ψn(x)Q(x) | Ψn(x)Φ2n(x)Q(x2)

which implies that Q(x) | Φ2n(x)Q(x2). But since n was chosen to be maximal such that Φn divides P ,
it follows that Q and Φ2n are coprime and thus Q(x) | Q(x2). Thus Q is square-friendly. It follows by P
being minimally square-friendly that Q = 1, so P = Ψn.

Now we can easily compute

deg Ψn = φ(m)(1 + 1 + 2 + · · ·+ 2k−1) = 2kφ(m)



which otherwise stated says that deg Ψn = φ(n) if n is odd and 2φ(n) if n is even.

So we want to find the number of odd n with φ(n) ≤ 12 and the number of even n with φ(n) ≤ 6. This
is equivalent to finding the number of n with φ(n) ≤ 6 and the number of odd n with 7 ≤ φ(n) ≤ 12.

It is not hard to compute that

φ−1({1, 2, 4, 6}) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 18}.

Now if n is odd and φ(n) = 8, it is easy to see that n = 15. If n is odd and φ(n) = 10 then we need
n = 11. If n is odd and φ(n) = 12 then we can compute n = 13 or n = 21. So the set of admissible n
is given by 1 ≤ n ≤ 15, n = 18, and n = 21, for a total of 17 distinct Ψn. Remembering that x is also
minimally square-free, there are a total of 18 such polynomials.

11. (Estimation) Vijay picks two random distinct primes 1 ≤ p, q ≤ 104. Let r be the probability that
32205403200 ≡ 1 mod pq. Estimate r in the form 0.abcdef , where a, b, c, d, e, f are decimal digits.

Proposed by Misha Ivkov

Answer: 8789
377303 ≈ 0.0232942754


