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Algebra and Number Theory Solutions

1. Suppose 7 is a real number such that 22 = 10z + 7. Find the unique ordered pair of integers (m,n) such
that 23 = mx + n.

Proposed by Vijay Srinivasan
Answer: (107,70)
Solution. We have

23 =x-2% = (102 +7) = 102° + 7z = 10(10x + 7) + 7z = 107z + 70

giving the answer | (107,70) | If there were another possible ordered pair, this would imply « is rational,

but since (x — 5)% = 32, this is clearly not the case.
2. Find the unique real number ¢ such that the polynomial z3 + cz + ¢ has exactly two real roots.

Proposed by Vijay Srinivasan

Answer: — %

Solution. If there are two real roots, then the third root must also be real, and one of the roots is a
double root. Thus we have

4 cx+ce=(xr—a)*(x—0b) =2>— (2a + b)x + (a® + 2ab)x — a®b

This gives b = —2a, equating the other coefficients gives ¢ = —3a? and ¢ = 2a®. So —3a? = 243, giving
a=0ora=-3/2. If a =0, then b = 0, giving only one real root, so this can’t occur. So a = —3/2 and

=)

3. Call a number “Sam-azing” if it is equal to the sum of its digits times the product of its digits. The only
two three-digit Sam-azing numbers are n and n 4+ 9. Find n.

Proposed by Sam Delatore
Answer: 135

Solution. We present two solutions.

First solution, by Partial Guesswork Observe that one of the two Sam-azing numbers, either n or
n+ 9, is odd. Since each of the digits of this number divides it, it follows that each of the digits is odd.
Testing a few small cases yields that 135 is Sam-azing.

Thus, the other Sam-azing number is either 126 or 144; of these, only 144 works, so n = .

Solution 2, by Direct Reasoning First observe that no positive Sam-azing integer can have a zero
digit; call this observation (). With this in mind, we make two crucial observations:

e Notice that n cannot have a units digit of either zero or one (the first one contradicts (f) for n, the
second contradicts (1) for n +9). Thus n has a units digit of at least two. As a consequence, the
units and tens digits of n and n + 9 are both different.

e Let a be the hundreds digit of n. Then
n+9¢ [100(a + 1),100(a + 1) + 9],

since otherwise n 4+ 9 has a zero digit, contradicting (f). It follows that n +9 < 100a + 90. As a
consequence, the hundreds digits of n and n 4+ 9 are identical.
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Combining both observations yields that

n=abc and n+9=a(b+1)(c—1)

for some nonzero digits a, b, and c.

So

9=alb+1)(c—1)(a+b+c)—abc(a+b+c)=alc—b—1)(a+b+c).

Since a, b, and ¢ are positive, and furthermore ¢ > 1, we must have a +b+c¢ > 4,s0a+b+c=9. It
follows that a = ¢ — b — 1 = 1. Solving this system of equations yields b =3 and ¢ =5, so n = .

. For all real numbers z, let P(x) = 1623 —21x. What is the sum of all possible values of tan? 6, given that

0 is an angle satisfying

P(sinf) = P(cos)?

Proposed by David Altizio

. 231
Answer: 55

Solution. Rewrite the given equality as

16sin® 0 — 21sin@ = 16 cos®§ — 21 cosf, or 16(sin® 6 — cos®#) = 21(sin @ — cos 9).

If sin @ = cosf, equality is trivially satisfied, and hence tanf = 1. Otherwise, we may divide both sides

by sin € — cos @ to get

21 = 16(sin? § + sin  cos 6 + cos? §) = 16(1 + sin f cos 6),

or

sinf cosf =

Now remark that there is one positive solution (z, 1) = (sinf,cos ) to the system of equations 2% +y? = 1
and xy = 1—56 up to permutation. Thus the two values of tan 6 are % and ¥, and so the sum of the values

of tan? 0 is

2?2 2 (22 +y?)? 256
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Pulling the two cases together gives the requested answer of | 221

. Let f(z) = 2*+3*. For how many integers 1 < n < 2020 is f(n) relatively prime to all of f(0), f(1),...

1)7
Proposed by Adam Bertelli

Answer: 11

Solution. We claim that f(n) is relatively prime to all of f(0), ...

25 |

206

25

,f(’ﬂ—

, f(n—1) if and only if n is a power

of 2 (Note that 2° = 1 is a power of two). Since 20 = 1024 while 2! = 2048, we get a total of values

of n.

We first prove the “only if” direction. Suppose n is not a power of 2, so that n = 2% . m for some odd

integer m. Observe that

f(n) = 22"m 4 32"m — (92" ym 4 (32" ym — (92" 4 32"y ar = (2K . M,

where M is some positive integer depending on k and m. Thus f(2¥) is not relatively prime to f(n),

implying n does not satisfy the condition.

The “if” condition is somewhat more difficult. The solution proceeds in two lemmas.

Lemma 1. For any positive integers m and n with m < n,

ged(22” + 327 22" £32") = 1.
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Proof. Suppose for contradiction that the greatest common divisor d is not 1, and let p be a prime dividing
d. Observe that 22" = —32" (mod p), and squaring both sides repeatedly eventually yields 22" = 32"
(mod p). (In particular, the negative sign goes away since we need to square at least once.) Thus, p
divides both 32" + 22" and 32" — 22" implying that p divides both 32" and 22". This is impossible. [

Lemma 2. Suppose a and b are nonnegative integers such that there exists a prime p dividing both f(a)
and f(b). Then p divides either 3% + 24 or 3¢ — 24 where d = ged(a, b).
Proof. Without loss of generality let a > b, so that a = bg + r by the Division Algorithm. Then, since p
divides both 3% 4+ 2% and 3° + 2%, it must also divide

3% 4 2% — 2(3b4 4 207) = 3ba(3" — 27).

But one can check p # 3, so p divides 3" — 2". Continuing inductively (with appropriate sign changes
whenever necessary) proves the result. O

Now suppose n = 2" for some nonnegative integer k, and let m < n. let p be a prime dividing both f(n)
and f(m). Observe that ged(n, m) = 2° for some nonnegative integer s, so by Lemma 2, p divides either
32" 422" or 32" — 22" The former case is immediately ruled out by Lemma 1. For the latter case, we
instead note the factorization

32 902 = (342)(32+22)..- (327 422 ).

Since p divides this product, p must divide 32" + 22" for some t < s — 1. Again, this is a contradiction by
Lemma 1. Hence such a prime does not exist and ged(f(n), f(m)) = 1. Since m was arbitrary, we deduce
that n works.

. Find all pairs of integers (z,y) such that z > 0 and

(6" —y)* =6""" —y.

Proposed by Dilhan Salgado

Answer: (1,0),(1,11), (4,1215), (4,1376)

Solution. Let a = 6" —y. Then
ala—1)=a*—a=6""" —y - 6" +y=>5-6"=2.3".5.

Notice that 2% divides a(a —1). However, a and a — 1 are relatively prime, so by Euclid’s Lemma, 2% must
divide either a or a — 1. Similarly, 3* must also divide either a or a — 1. This yields two cases.

Case 1: 2 and 3” both divide the same factor. Then {a,a — 1} = {6%,5}, and so 6” and 5 must
differ by 1. The only way this can happen is if = 1; in this case, a is either —5 or 6.

Case 2: 2” and 3” divide different factors. In this case, we need 5 - 2% and 3” to differ by 1. (The
other case is clearly not possible, since 2 and 3% - 5 always differ by greater than 1.) The only way this
can happen is if x = 4; in this case, a = 81 or a = —80.

Solving both cases we get the 4 solutions \ (1,0), (1,11), (4,1215), and (4, 1376) \

. Compute the positive difference between the two real solutions to the equation

(z—1)(z—4)(x —2)(x — 8)(x — 5)(x — 7) + 48V3 = 0.

Proposed by Misha Ivkov
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Answer: /25 + 83

Solution. We proceed by making a series of substitutions. It is possible to solve this problem with
fewer substitutions, but we choose to present the solution below for motivational purposes.

First remark that, by grouping factors together, the equation rewrites as
(2% — 9z + 8)(2® — 9z + 14)(2® — 9z + 20) + 48v/3 = 0.
Now, to exploit symmetry, set z = 22 — 9z + 14; then the equation becomes
2(2 —6)(z 4 6) + 48v3 = 0.

Now let w = £ (to divide out the common factors of 6) to get

2
w—w+ —==0

3V3

Finally, let v = w+/3, so that then the equation becomes
v® —3v+2=0.

By Rational Root Theorem, the solutions are v = —2 and v = 1. Propagating this information up gives
the desired solution.

- Let f: N = (0, 00) satisfy [],, f(d) = 1 for every n which is not prime. Determine the maximum possible
number of n with 1 <n <100 and f(n) # 1.

Proposed by Vijay Srinivasan
Answer: 82

Solution. Let g(n) = log f(n) and h(n) = 3_,,, 9(d); the condition is equivalent to h(n) = 0 for every
n which is not prime. By Mobius inversion,

g(n) = > u(dh ()

d|n

We can make the above term nonzero as long as there is some d for which d is squarefree (so that u(d) is
nonzero) and % is prime. To guarantee that g(n) is nonzero whenever possible, make the values of h at
primes Q-linearly independent (e.g. h(p) = |/p for primes works). Therefore we can have f(n) # 1 if and
only if n is the product of a prime and a squarefree number.

To count the number of n for which f(n) # 1, we will instead count the number of n for which f(n) = 1.
Note that f(1) = 1. Next, if n is divisible by the cube of a prime, then f(n) = 1. This includes multiples
of 8 and 27 of which there are 124 3 = 15 (with no overlap). The remaining cases are numbers which are
divisible by the squares of two distinct primes but not divisible by the cube of a prime. For n < 100, this
only includes 2232 = 36 and 2252 = 100. The total number of n for which f(n) =11is 1+ 15+ 2 = 18, so

there are values of n for which f(n) # 1.

. Let p = 10009 be a prime number. Determine the number of ordered pairs of integers (z,y) such that
1<z,y<pand z® - 3zy + y> + 1 is divisible by p.

Proposed by Vijay Srinivasan
Answer: 30024
Solution. Note that if w is a primitive cube root of unity, then over reals we have the factorization

23 yP 428 Bayz = (x+y+ 2)(z + wy + W) (2 + Wiy + wz).
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10.

Since 10009 = 1 (mod 3), there exists a primitive cube root of unity modulo 10009 (which we will also
denote w), and the same factorization applies. Specializing to z = 1 yields

4y} +1 -3y = (z+y+ 1)(z+wy +w?)(z +w?y +w).

These are three linear expressions, and each pair of an equation and a value of y results in a unique value
of x to make the expression 0. For each pair of linear expressions, there is a unique value of y for which
the solution for = will coincide. We may check that these overlaps occur at y = 1,w,w?, so the number of

pairs (x,y) is 3p — 3 =]30024 |.

We call a polynomial P square-friendly if it is monic, has integer coefficients, and there is a polynomial
Q for which P(n?) = P(n)Q(n) for all integers n. We say P is minimally square-friendly if it is square-
friendly and cannot be written as the product of nonconstant, square-friendly polynomials. Determine
the number of nonconstant, minimally square-friendly polynomials of degree at most 12.

Proposed by Vijay Srinivasan
Answer: 18

Solution. Say P is square-friendly. We claim that each irreducible factor of P must be either = or a
cyclotomic polynomial ®,, for some n. Let a be a nonzero root of P. Note that the condition on P means
that o2 is a root for each positive integer n. If all of these are unique, then P has infinitely many roots,
which is impossible, so a?” = a?" for some m,n; in particular « is a root of unity. It follows that P is
uniquely expressible as a product of cyclotomic polynomials and a power of x. Further, it is clear that if
P is minimally square-friendly, then there are no powers of x unless P(x) = x.

We now claim that if P is square-friendly and ®of, divides P, then so does ®;. Indeed, the roots of Py,
are the primitive 2k-th roots of unity; their squares are then the primitive k-th roots of unity and so
necessarily @ divides P.

This shows that if n = 2¥m where m is odd, and ®,, divides P, so does the product
\I/n = q)mcbgm(b4m e ¢2k—1m¢2km:n.

We claim that W,, is square-friendly. For this, we will need two facts, collected in the following lemma.
Lemma: If b is odd, then ®,(2?) = @, (x)Pap(z) and if b is even, then ®y(z?) = Doy ().

Proof: When b is even, the map o — «? is easily seen to be 2-to-1 from the roots of @5 to the roots of
®;, so this finishes the even case. When b is odd, this map is instead 1-to-1, so that ®gp(x) | ®p(2?). We
also have that the map a — o2 is a bijection on the roots of ®;, since b is odd, so ®; | ®;(x?). Since Py
and @y, are coprime, we see by comparing degrees that ®;(x)®q;(2) = ®4(22). Q.E.D.

Given the lemma, we see that
U, (x) = B (22) Py (22) - - - D1y, (22)

and so we certainly have W, (x) | ¥,,(2?). In fact, we see that W, (z%) = ¥, (2)®2, (z).

We now show that any minimally square-friendly P (besides P(x) = z) is equal to some ¥,,. Let n be
the largest integer for which ®,, | P. Then our previous results show that ¥,, | P and that W, (z?) =
U, (2)®a, (). So if P =¥, Q then we have that P(2?) = U,,(2)®a, (2)Q(2?). It follows that

Uy (2)Q(@) | Ui (2)P2n(2)Q(2?)

which implies that Q(z) | ®2,(z)Q(x?). But since n was chosen to be maximal such that ®,, divides P,
it follows that Q and ®,,, are coprime and thus Q(z) | Q(z?). Thus Q is square-friendly. It follows by P
being minimally square-friendly that Q@ =1, so P = ¥,,.

Now we can easily compute

deg W, = ¢(m)(1+1+2+---+2°71) = 2%¢(m)
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11.

which otherwise stated says that deg ¥,, = ¢(n) if n is odd and 2¢(n) if n is even.

So we want to find the number of odd n with ¢(n) < 12 and the number of even n with ¢(n) < 6. This
is equivalent to finding the number of n with ¢(n) < 6 and the number of odd n with 7 < ¢(n) < 12.

It is not hard to compute that
o ({1,2,4,6}) = {1,2,3,4,5,6,7,8,9,10,12, 14, 18}.

Now if n is odd and ¢(n) = 8, it is easy to see that n = 15. If n is odd and ¢(n) = 10 then we need
n = 11. If n is odd and ¢(n) = 12 then we can compute n = 13 or n = 21. So the set of admissible n
is given by 1 < n < 15, n = 18, and n = 21, for a total of 17 distinct ¥,. Remembering that x is also
minimally square-free, there are a total of such polynomials.

(Estimation) Vijay picks two random distinct primes 1 < p,q < 10*. Let r be the probability that
32205403200 = 1 yod pg. Estimate r in the form 0.abcdef, where a, b, c,d, e, f are decimal digits.

Proposed by Misha Ivkov

Answer: ;589 ~ 0.0232942754




