
Team Solutions

1. David recently bought a large supply of letter tiles. One day he arrives back to his dorm to find that some of
the tiles have been arranged to read Central Michigan University. What is the smallest number of tiles
David must remove and/or replace so that he can rearrange them to read Carnegie Mellon University?

Proposed by David Altizio

Answer: 5

Solution. Notice that David need not adjust any letters from the word University, since these also
appear in the desired phrase. In general, it suffices to determine which letters are common to both phrases;
the unmatched letters from Central Michigan University must then be removed or replaced with letters
from Carnegie Mellon University. Doing this results in the following figure, where the top row represents
letters from the former expression and the bottom row represents letters from the latter expression.

CenralMign tchia
CenralMign eelo

It follows that David must replace 5 letters to reach his goal.

2. Determine the number of ordered pairs of positive integers (m,n) with 1 ≤ m ≤ 100 and 1 ≤ n ≤ 100 such
that

gcd(m+ 1, n+ 1) = 10 gcd(m,n).

Proposed by David Altizio

Answer: 52

Solution. The crucial claim is that gcd(m,n) = 1. Indeed, suppose not, and let gcd(m,n) = k > 1.
Then k | gcd(m + 1, n + 1) as well, so k | m and k | m + 1 simultaneously. This contradicts k > 1. Hence
gcd(m,n) = 1, which implies gcd(m+ 1, n+ 1) = 10.

Now as m+ 1 and n+ 1 are both multiples of 10, they must come from the set

{9, 19, 29, 39, 49, 59, 69, 79, 89, 99}.

A quick inspection reveals that 9, 39, 69, and 99 are multiples of 3; 49 is a power of 7; and the remaining five
integers are prime. It follows that, upon writing

A = {10, 40, 70, 100} and B = {20, 30, 50, 60, 80, 90},

either both m+ 1 and n+ 1 lie in B or exactly one lies in A and exactly one lies in B.

This gives us a good way to count the answer by casing on m; if m+1 ∈ A, then check all values of n+1 lying
in B, while if m+ 1 ∈ B, then check all values of n+ 1 lying in A ∪B instead. Doing this and remembering
to take into account that m and n are ordered yields the correct answer of 52 .

3. Points A(0, 0) and B(1, 1) are located on the parabola y = x2. A third point C is positioned on this parabola
between A and B such that AC = CB = r. What is r2?

Proposed by David Altizio

Answer: 5− 2
√

5

Solution. Let C be the point (t, t2). Then by the Distance Formula the equality AC = CB is equivalent
to

t2 + t4 = r2 = (1− t)2 + (1− t2)2 = 2− 2(t+ t2) + (t2 + t4).



Thus t2 + t = 1. Solving yields t = −1+
√
5

2 , so t2 = 1−
√
5

2 . This in turn implies

r2 = t2 + t4 =
1−
√

5

2
+

(
1−
√

5

2

)2

= 5− 2
√

5 .

4. Let 4A1B1C1 be an equilateral triangle of area 60. Chloe constructs a new triangle 4A2B2C2 as follows.
First, she flips a coin. If it comes up heads, she constructs point A2 such that B1 is the midpoint of A2C1. If
it comes up tails, she instead constructs A2 such that C1 is the midpoint of A2B1. She performs analogous
operations on B2 and C2. What is the expected value of the area of 4A2B2C2?

Proposed by David Altizio

Answer: 195

Solution. Observe that there are two possible configurations which can arise. The left configuration occurs
when either all coin flips are heads or all are tails, which happens with probability 1

4 . The right configuration
occurs in the other case, which happens with probability 3

4 .

Let K = 60 denote the area of the original equilateral triangle for simplicity. The left triangle decomposes
into the original triangle with area K and three congruent obtuse triangles with area 2K, and so its total area
is 7K. The right triangle is congruent to one of these obtuse triangles and thus has area 2K. It follows that
the expected area of the shaded triangle is

2K · 3

4
+ 7K · 1

4
=

13

4
K = 195 .

5. On Misha’s new phone, a passlock consists of six circles arranged in a 2 × 3 rectangle. The lock is opened
by a continuous path connecting the six circles; the path cannot pass through a circle on the way between
two others (e.g. the top left and right circles cannot be adjacent). For example, the left path shown below
is allowed but the right path is not. (Paths are considered to be oriented, so that a path starting at A and
ending at B is different from a path starting at B and ending at A. However, in the diagrams below, the
paths are valid/invalid regardless of orientation.) How many passwords are there consisting of all six circles?

Proposed by Max Aires and Ani Chowdhury



Solution. Number the circles in the top row 1, 2, 3 and the circles in the bottom row 4, 5, 6. The condition
is equivalent to finding the number of permutations of (1, 2, 3, 4, 5, 6) such that 1 and 3 are not adjacent and
4 and 6 are not adjacent.

We proceed using complementary counting and PIE. There are 6! = 720 total permutations. The number of
permutations with 1 and 3 next to each other is 5!× 2 = 240, and similarly the number of permutations with
4 and 6 next to each other is 240. Finally, the number of permutations with both adjacencies is 4!× 22 = 96.
It follows that the requested answer is

720− (240 + 240− 96) = 336 .

6. Across all x ∈ R, find the maximum value of the expression

sinx+ sin 3x+ sin 5x.

Proposed by David Altizio

Answer:
72
√

15

125

Solution. Write sinx+ sin 5x = 2 sin 3x cos 2x by the Sum to Product rules, so the expression to maximize
becomes sin 3x(1 + 2 cos 2x). Let t = sinx. Note that

sin 3x = 3t− 4t3 = t(3− 4t2) = t(1 + 2 cos 2x),

and so our expression miraculously becomes t(3− 4t2)2. Now let this equal S; then by AM-GM

16S2 = 16t2
(
3− 4t2

)2 ≤ (16t2 + 4(3− 4t2)

5

)2

=

(
12

5

)5

,

and so S ≤ 1
4 · (

12
5 )5/2 = 72

√
15

125 . Equality holds when x = arcsin
(√

15
10

)
.

7. Suppose you start at 0, a friend starts at 6, and another friend starts at 8 on the number line. Every second,
the leftmost person moves left with probability 1

4 , the middle person with probability 1
3 , and the rightmost

person with probability 1
2 . If a person does not move left, they move right, and if two people are on the same

spot, they are randomly assigned which one of the positions they are. Determine the expected time until you
all meet in one point.

Proposed by Misha Ivkov

Answer: 16

Solution. We claim that S, the sum of pairwise distances between the three people, is a different random
walk. Indeed, we can consider the change of the x-distance with each move:

Move Probability Change
LLL 1/24 0
LLR 1/24 4
LRL 1/12 0
LRR 1/12 4
RLL 1/8 -4
RLR 1/8 0
RRL 1/4 -4
RRR 1/4 0



We then rewrite our problem as a walker starting at S = 4 and trying to reach 0. The walker stays put with
probability 1

2 , moves left 1 with probability 3
8 , and moves right with probability 1

8 . Let E[x, y] denote the
time to get from x to y. We are interested in E[4, 0]. Furthermore, note that the time the walker stops for is
Geometric with probability 1

2 , so the expected stopping time is 2. Then we have the following recurrence for
E[1, 0]:

E[1, 0] = 2 +
1

4
E[2, 0] = 2 +

1

4
(E[2, 1] + E[1, 0]) = 2 +

1

2
E[1, 0]

implying E[1, 0] = 4. We used linearity of expectation here and noted that E[x, y] = E[x + 1, y + 1]. From

here, note that E[n, 0] = nE[1, 0] so E[4, 0] = 16 .

8. A positive integer n is brgorable if it is possible to arrange the numbers 1, 1, 2, 2, . . . , n, n such that between
any two k’s there are exactly k numbers (for example, n = 2 is not brgorable, but n = 3 is as demonstrated
by 3, 1, 2, 1, 3, 2). How many brgorable numbers are less than 2019?

Proposed by Tudor Popescu

Answer: 1008

Solution. We claim that the only brgorable numbers n are those for which n ≡ 0 or 3 (mod 4).

First we show that a number of form 4k+ 1 or 4k+ 2 is not brgorable. Color the numbers in black and white
alternatively. Note that if a number is brgorable, then the positions of any two equal odd numbers must have
the same color, while the positions of any two equal even ones must have different colors. Therefore, we must
have an even number of odd numbers, so we have that n is of the form 4k or 4k + 3.

It remains to find constructions for these numbers. First suppose n = 4k; then the construction is

4k − 4, 4k − 6, . . . , 2k, 4k − 2, 2k − 3, 2k − 5, . . . , 1, 4k − 1, 1, 3, . . . , 2k − 3,

2k, 2k + 2, . . . , 4k − 4, 4k, 4k − 3, 4k − 5, . . . , 2k + 1, 4k − 2, 2k − 2, 2k − 4, . . . ,

2, 2k − 1, 4k − 1, 2, 4, . . . , 2k − 2, 2k + 1, 2k + 3, . . . , 4k − 3, 2k − 1, 4k.

For example, for k = 3 this yields the sequence

8, 6, 10, 3, 1, 11, 1, 3, 6, 8, 12, 9, 7, 10, 4, 2, 5, 11, 2, 4, 7, 9, 5, 12.

Now suppose n = 4k − 1. Then the construction is

4k − 4, 4k − 6, . . . , 2k, 4k − 2, 2k − 3, 2k − 5, . . . , 1, 4k − 1, 1, 3, . . . , 2k − 3,

2k, 2k + 2, . . . , 4k − 4, 2k − 1, 4k − 3, 4k − 5, . . . , 2k + 1, 4k − 2, 2k − 2, 2k − 4, . . . , 2,

2k − 1, 4k − 1, 2, 4, . . . , 2k − 2, 2k + 1, 2k + 3, . . . , 4k − 3.

For example, if k = 2, then the sequence is

4, 6, 1, 7, 1, 4, 3, 5, 6, 2, 3, 7, 2, 5.

Therefore, there are exactly 1008 brgorable numbers less than 2019.

9. Let f : N → N be a bijection satisfying f(ab) = f(a)f(b) for all a, b ∈ N. Determine the minimum possible
value of f(n)/n, taken over all possible f and all n ≤ 2019.

Proposed by Vijay Srinivasan

Answer: 2
2017

Solution. First, it is clear that f(1) = 1 so f(n) > 1 for n > 1. Let P denote the set of primes. It is clear
that for a bijection g : P → P, there is a unique completely multiplicative bijection f : N→ N with f |P = g.
We claim for any f satisfying the conditions of the problem, there is such a bijection g with f |P = g. Suppose
that for some prime p, f(p) is not prime. Then there are q, r > 1 with f(p) = qr, so p = f−1(q)f−1(r)



expresses p as a product of integers > 1, a contradiction. Thus f(P) ⊂ P. If there is a prime p that does
not appear in f(P), then p also does not appear in f(N), a contradiction since f is a bijection on the natural
numbers. So f(P) ⊃ P and so f |P is a bijection as desired.

Then for prime numbers p we have f(p) ≥ 2 and for composite numbers m we have f(m) ≥ 4. Thus, for

1 ≤ n ≤ 2019, we have f(n)/n ≥ 2
2017 . This bound is achieved, for example, when f(2) = 2017, f(2017) = 2,

and f(p) = p for all p ∈ P \ {2, 2017}.

10. Let 4ABC be a triangle with side lengths a, b, and c. Circle ωA is the A-excircle of 4ABC, defined as the
circle tangent to BC and to the extensions of AB and AC past B and C respectively. Let TA denote the
triangle whose vertices are these three tangency points; denote TB and TC similarly. Suppose the areas of TA,
TB , and TC are 4, 5, and 6 respectively. Find the ratio a : b : c.

Proposed by David Altizio

Answer: 22 : 25 : 27

Solution. Let the tangency points of ωA with BC, AC, and AB be A′, B′, and C ′ respectively, and denote
by I the incenter of4ABC. Note that a simple angle chase yields ∠A′B′C ′ = ∠BA′C ′ = ∠IBC and similarly
∠A′C ′B′ = ∠ICB, so 4A′B′C ′ ∼ 4IBC. The ratio of similitude of these triangles is

2s sin A
2

a
=

2s

a

√
(s− b)(s− c)

bc
.

As such the area TA of TA is

TA =
1

2
ar ·

(
2s

a

√
(s− b)(s− c)

bc

)2

=
2s2r(s− b)(s− c)

abc
=

K2

2R(s− a)
.

This means that

K2

(
1

TA
+

1

TB

)
= 2R[(s− a) + (s− b)] = 2Rc

and similar, so

a

c
=

2Ra

2Rc
=

1
TB

+ 1
TC

1
TA

+ 1
TB

=
TA(TB + TC)

TC(TB + TA)
.

Plugging in the numbers yields a
c = 4·11

6·9 = 22
27 . Similarly, b

c = 25
27 . Therefore a : b : c = 22 : 25 : 27 .

11. Let S be a subset of the natural numbers such that 0 ∈ S, and for all n ∈ N, if n is in S, then both 2n + 1
and 3n+ 2 are in S. What is the smallest number of elements S can have in the range {0, 1, . . . , 2019}?

Proposed by Cody Johnson

Answer: 47

Solution. Set N = 2019 for simplicity. Let f(n) = 2n+ 1 and 3n+ 2. The key observation is that

f(g(n)) = f(3n+ 2) = 6n+ 5 = g(2n+ 1) = f(g(n)),

i.e. that f and g commute.

With this in mind, let
S = {n ≥ 0 : ∃ p, q ≥ 0 | n = fp(gq(0))}.

Observe that any set S satisfying the properties in the problem statement must contain all elements of S.
Furthermore, by commutativity of f and g, S is closed under f and g. It follows that S is the smallest set
satisyfing the problem constraints, where here “smallest” is referring to inclusion.



But now we may characterize all elements of S specifically, since

gq(0) = 3q − 1 and fp(3q − 1) = 2p3q − 1.

It follows that an integer 0 ≤ n ≤ N is in S if and only if it can be written in the form 2p3q − 1 for some
p, q ≥ 0.

Finally, to compute the answer, note that all such numbers are distinct, so we may partition {0, 1, . . . , N}∩S
based on the value of p. For a given p, write

2p3q − 1 ≤ 2019 if and only if 2p ≤ 2020

3q
.

It follows that the number of elements of {0, 1, . . . , N}∩S in this form is blog2( 2020
3p )c+1, and so the requested

answer is ∑
m≥0

⌊
log2

(
2020

3m

)⌋
+ 1 = 11 + 10 + 8 + 7 + 5 + 4 + 2 = 47 .

12. Call a convex quadrilateral angle-Pythagorean if the degree measures of its angles are integers w ≤ x ≤ y ≤ z
satisfying

w2 + x2 + y2 = z2.

Determine the maximum possible value of x+ y for an angle-Pythagorean quadrilateral.

Proposed by Gunmay Handa and Vijay Srinivasan

Answer: 207

Solution. Let n = 180. We have the constraints

w + x+ y + z = 2n and w2 + x2 + y2 = z2.

Set p = n− x, q = n− y for ease so that we have w + z = p+ q and hence also

(n− p)2 + (n− q)2 = (p+ q)(z − w).

Since z = p+ q − w we have

p+ q − 2w =
(n− p)2 + (n− q)2

p+ q

and so solving for w gives

w = n− n2 − pq
p+ q

.

If we set r = n2−pq
p+q then we want ordered pairs (p, q) for which r is an integer and n − r = w < x = n − p,

i.e. r > p. We now write p+ q = S. So we want to find the minimal S for which there exists a p such that

n2 − p(S − p)
S

is an integer > p. An AM-GM bound on n2 − p(S − p) yields that S ≥ d2n(
√

2 − 1)e = 150. We see that
S = 150 gives solutions

(p, q) = (90, 60), (120, 30)

but in both of these cases we find that w ≤ 0. For S = 151, we see that r being an integer is equivalent to
151 | (n2 + p2) which is impossible since 151 is a prime ≡ 3 (mod 4). Similarly 152 can be eliminated since
19 | 152. Having S = 153 finally gives a solution, namely (w, x, y, z) = (4, 84, 123, 149). So x+ y is maximized

at 360− 153 = 207 .



13. Points A, B, and C lie in the plane such that AB = 13, BC = 14, and CA = 15. A peculiar laser is fired
from A perpendicular to BC. After bouncing off BC, it travels in a direction perpendicular to CA. When it
hits CA, it travels in a direction perpendicular to AB, and after hitting AB its new direction is perpendicular
to BC again. If this process is continued indefinitely, the laser path will eventually approach some finite
polygonal shape T∞. What is the ratio of the perimeter of T∞ to the perimeter of 4ABC?

Proposed by David Altizio

Answer: 168
295

Solution. The shape T∞ is actually 4XY Z, where X ∈ AB, Y ∈ BC, and Z ∈ CA such that ZY ⊥ BC,
Y X ⊥ AB, and XZ ⊥ CA.

To prove this, for all positive integers n let dn = AXn, where Xn is the bouncing point of the laser on AB
after n turns. By going around the triangle and using right-triangle trig to compute the locations of other
bounce points, one sees that

dn+1 = c− cosB(a− cosC(b− dn cosA)) = M +Ndn

for some universal constants M and N . Now because |N | < 1, the function x 7→ M + Nx is a contraction,
and so by the Banach Fixed Point Theorem we see that the dn converge to some fixed real number r. This
proves the claim. (Banach is not necessary here; noting that |dn+1 − dn| decays geometrically is good enough
too.)

We now propose three ways to finish.

• Geometric Finish: It is easy to see that 4XY Z ∼ 4ABC via an angle chase; for example, ∠AY Z =
90◦ − ∠AY B = ∠ABC. These triangles are furthermore directly similar, and thus there exists a spiral
similarity sending 4XY Z to 4ABC. Let P denote the center of this spiral similarity. Then ∠PZX =
∠PAB, so quadrilateral AXPZ is cyclic, which in turn implies ∠PXZ = ∠PAZ = ∠PZY . Repeating
this argument cyclically yields ∠PAB = ∠PBC = ∠PCA = ω, so in fact P is the first Brocard point of
4ABC and ω the Brocard angle.

To finish, remark that since Z is spirally sent to A under the spiral similarity, the ratio of the perimeters
of the two triangles is PZ : PA. But note that since AXPZ is cyclic, ∠APZ = ∠AXZ = 90◦, so this
expression is actually equal to

tanω =
1

cotA+ cotB + cotC
=

4K

a2 + b2 + c2
=

168

295
.

• Geometrico-Trigonometric Finish: Let E be with AE ⊥ AB and DE ⊥ AC, where D is the foot of
A onto BC. Observe that Z ≡ BE ∩AC, so since 4Y XZ ∼ 4ADE ∼ 4BCA we have that

Y Z

AB
=
Y Z/AE

AB/AE
=
BZ/BE

BC/AD
.

But
BZ

ZE
=
AB sin∠BAZ
AE sin∠ZAE

=
BC sinA

AD cosA
,

whence
BZ/BE

BC/AD
=

BC sinA
BC sinA+AD cosA

BC
AD

=
AD sinA

BC sinA+AD cosA
.

Dividing through by sinA, multiplying by BC in the numerator and denominator and using the fact
that AD = AB·AC·sinA

BC yields

AD sinA

BC sinA+AD cosA
=

AD ·BC
BC2 +AB ·AC cosA

=
4K

a2 + b2 + c2

by the Law of Cosines, as desired.



• Trigonometric Finish: The real number r is the unique fixed point of f , i.e. the solution to r = M+Nr.
The solution to this is r = M

1−N , and so, after deducing 4XY Z ∼ 4ABC as in the first solution, the
desired ratio is

XZ

BC
=
r sinA

b
=

(c− a cosB + b cosB cosC) sinA

(1 + cosA cosB cosC)b
=

(b cosA+ b cosB cosC) sinA

(1 + cosA cosB cosC)b

=
sinA sinB sinC

1 + cosA cosB cosC

(∗)
=

K

2R2(1 + cosA cosB cosC)

(∗∗)
=

K

R2(sin2A+ sin2B + sin2 C)

=
4K

a2 + b2 + c2
,

and so we have the same answer as above. Here (∗) is due to the identity K = 2R2 sinA sinB sinC while
(∗∗) is due to the identity cos2A+ cos2B + cos2 C + 2 cosA cosB cosC = 1.

14. Consider the following function:

procedure M(x)
if 0 ≤ x ≤ 1 then

return x
return M(x2 mod 232)

Let f : N → N be defined such that f(x) = 0 if M(x) does not terminate, and otherwise f(x) equals the
number of calls made to M during the running of M(x), not including the initial call. For example, f(1) = 0
and f(231) = 1. Compute the number of ones in the binary expansion of

f(0) + f(1) + f(2) + · · ·+ f(232 − 1).

Proposed by Misha Ivkov and Theodore Li

Answer: 15

Solution. Note first that all numbers terminate and that the algorithm just returns if a number is even or
odd. So, let’s do those two cases separately.

First, we claim that the order of 3 modulo 2k is 2k−2. Note that v2(j!) ≤ 2j − 3 if and only if j > 1. Hence

4j
(
2k−3

j

)
≡ 0 mod 2k iff j > 1. Then 32

k−3

= (4−1)2
k−3 ≡ −4×2k−3+1 mod 2k, so ord2k(3) > 2k−3. However,

we can adapt the same argument and find that 32
k−2 ≡ −4× 2k−2 + 1 ≡ 1 mod 2k so ord2k(3) = 2k−2.

Define S = {3i mod 2k | 0 ≤ i < 2k−2}. Now note that at least one of 2k − 1, 2k−1 − 1, 2k−1 + 1 is not in S
since they all square to 1. Let m be one of the ones which is not in S. Then note that f(3i) = f(m × 3i)
except when i = 0.

Further, note that f(1) = 0 and f(m) = 1. Now let’s get an exact value for f(3a). Note that f(3) = 30 (since

we go 31, 32, . . . , 32
i

, . . . , 32
30

for a total of 30 iterations). Therefore, we can deduce that f(32
ab) = 30− a for

all odd b. Finally the sum we wish to find is 1 + 2
230−1∑
x=1

f(3x). There are 229 such odd x, 228 such x which

are not divisible by 4, and so on. So in fact

1 + 2

230−1∑
x=1

f(3x) = 1 +

30∑
a=1

a2a = 3 + 29× 231

The even case happens to be much easier. Let x = 2ab be even. Then we double the exponent at every
iteration. For example, if a = 1, then we will go 22

0

b, 22
1

b2, 22
2

b4, . . . , 22
5

b32 which means f(2b) = 5 for
all odd b. Similarly, we can compute that f(4b) = f(8b) = 4. Continuing onward, we must have that
f(16b) = . . . = f(128b) = 3. In general, there are 230 x such that f(x) = 5, (22 − 1) × 228 with f(x) = 4,



(24 − 1)× 224 with f(x) = 3, (28 − 1)× 216 with f(x) = 2, and 216 − 1 with f(x) = 1. Hence the total even
sum is

5× 230 + 12× 228 + 45× 224 + 510× 216 + 216 − 1

Therefore our number is

n = 29× 231 + 5× 230 + 12× 228 + 45× 224 + 511× 216 + 2

= 33× 231 + 45× 224 + 511× 216 + 2

= 236 + 231 + (25 + 23 + 22 + 20)× 224 + (28 + 28 − 1)× 216 + 2

= 236 + 231 + 229 + 227 + 226 + 225 + 223 + . . .+ 216 + 21

which has 15 ones:
1000010101110111111110000000000000010.

15. Call a polynomial P prime covering if for every prime p, there exists an integer n for which p divides
P (n). Determine the number of ordered triples of integers (a, b, c), with 1 ≤ a < b < c ≤ 25, for which
P (x) = (x2 − a)(x2 − b)(x2 − c) is prime-covering.

Proposed by Vijay Srinivasan

Answer: 1194

Solution. We claim that the result holds iff at least one of a, b, c, or abc is a perfect square.

First we show that this condition works. If a is a perfect square, then setting n :=
√
a ∈ N gives P (n) = 0,

and so in particular p | P (n) for all positive integers n. Analogous reasoning works when b and c are squares.
Now suppose abc is a perfect square, and note that for any prime p

1 =

(
abc

p

)
=

(
a

p

)(
b

p

)(
c

p

)
.

Thus it is impossible for a, b, and c to simultaneously not be quadratic residues modulo p, meaning there
must exist some n for which p | P (n).

The reverse direction is significantly trickier, and crucially makes use of the following lemma.

Lemma 1. Let p1, p2, · · · , pn be primes and e1, e2, · · · , en ∈ {−1, 1}. Then there exists a prime q with the
property that (pi

q ) = ei for all 1 ≤ i ≤ n.

Proof. For each 1 ≤ i ≤ n, let αi be some (nonzero) quadratic residue modulo pi if ei = 1 and let αi be some
nonzero nonquadratic residue modulo pi if ei = −1. Furthermore, set α = 5 iff there exists some i with pi = 2
and ei = −1, and let α = 1 otherwise.

Now consider the system of equations 
x ≡ α (mod 8),

x ≡ α1 (mod pi),
...

x ≡ αn (mod pn).

Note that by CRT this system has a unique solution

x ≡ N (mod 8p1 . . . pn)

(and in particular is not inconsistent if pi = 2 for some i). Furthermore, gcd(N, 8p1 . . . pn) = 1 since
gcd(αi, pi) = 1 for all i. It follows by Dirichlet’s Theorem that there exists some prime q satisfying this
system of congruences. We claim that this is the prime q we seek.

To prove this, let i be arbitrary. We case on the value of pi.



• If pi = 2, then recall (
2

q

)
=

{
1 if q ≡ 1, 7 (mod 8),

−1 if q ≡ 3, 5 (mod 8).

But q ≡ α (mod 8), where α was 1 if ei = 1 and α was 5 if ei = −1. It follows that ( 2
pi

) = ei.

• Now suppose pi ≥ 3 is an odd prime. Note that q ≡ 1 (mod 4), so by the Law of Quadratic Reciprocity,(
pi
q

)(
q

pi

)
= (−1)(pi−1)(q−1)/4 = 1,

whence (pi

q ) = ( q
pi

). In particular, (pi

q ) = 1 iff q is a quadratic residue modulo pi, which is exactly what

the condition x ≡ αi (mod pi) forces.

We are done.

We now proceed with the proof. Suppose that none of a, b, and c are squares. Then WLOG assume they are

squarefree since in general for integers m and n and any prime p, it is true that (mn2

p ) = (m
p ). Suppose abc is

not a square. Let {p1, p2, · · · , pn} be the set of primes dividing abc. Since abc is not a square, it follows that
one of these primes - WLOG let it be p1 - divides exactly 1 or exactly 3 elements of the set {a, b, c}. If p1
divides all of a, b, and c, defining

e1 = −1 and e2 = e3 = · · · = en = 1

guarantees the existence of a prime q for which (a
q ) = ( b

q ) = ( c
q ) = −1, and hence contradicts the assumption

that {P (n)} contains a multiple of q. So p1 must divide exactly one of a, b, c; again WLOG suppose p1 | a. If
b and c share a prime factor (say p2), then define e2 = −1 and e3 = e4 = · · · = en = 1. If b and c are coprime,
WLOG suppose that p2 | b and p3 | c. Set

e2 = e3 = −1 and e4 = e5 = · · · = en = 1.

We can write a = p1pm1
pm2
· · · pmr

, and defining e1 = −em1
em2
· · · emr

reveals that we can again find a prime
q which contradicts the assumption of the problem. So if abc is not a square, there is some prime q for which
{P (n)} contains no multiples of q.

Now we proceed with the counting. We split into cases.

• The number of sets {a, b, c} which contain at least one perfect square is, by complementary counting,
equal to

(
25
3

)
−
(
20
3

)
= 1160.

• Now suppose a, b, and c are all squarefree. The prime divisors of abcmust come from the set {2, 3, 5, 7, 11};
else at least two of a, b, or c must be divisible by a prime which is at least 13. Furthermore, all products
of one or two primes from this set lie in the set {1, 2, . . . , 25}. Hence the set {a, b, c} is either of the form
{p, q, pq} or {pq, pr, qr} for some distinct primes p, q, r; the number of such sets is thus

(
5
2

)
+
(
5
3

)
= 20.

• Finally, suppose a, b, c are all not perfect squares but at least one is not squarefree. The only integers
which are neither perfect squares nor squarefree with prime divisors in the set {2, 3, 5, 7, 11} are 23, 22×3,
22 × 5, and 2× 32. A quick count yields 14 additional sets, namely

{1, 2, 8}, {1, 8, 18}, {3, 6, 8}, {3, 8, 24}, {5, 8, 10}, {6, 8, 12}, {7, 8, 14},
{8, 10, 20}, {8, 11, 22}, {8, 12, 24}, {2, 6, 12}, {2, 12, 24}, {5, 12, 15}, and {7, 12, 21}.

It follows that the requested answer is 1160 + 34 = 1194 .


