CMIMD 2019

Team Solutions

1. David recently bought a large supply of letter tiles. One day he arrives back to his dorm to find that some of
the tiles have been arranged to read CENTRAL MICHIGAN UNIVERSITY. What is the smallest number of tiles
David must remove and/or replace so that he can rearrange them to read CARNEGIE MELLON UNIVERSITY?

Proposed by David Altizio
Answer: 5

Solution. Notice that David need not adjust any letters from the word UNIVERSITY, since these also
appear in the desired phrase. In general, it suffices to determine which letters are common to both phrases;
the unmatched letters from CENTRAL MICHIGAN UNIVERSITY must then be removed or replaced with letters
from CARNEGIE MELLON UNIVERSITY. Doing this results in the following figure, where the top row represents
letters from the former expression and the bottom row represents letters from the latter expression.

CENRALMIGN TCHIA
CENRALMIGN EELO
It follows that David must replace letters to reach his goal.

2. Determine the number of ordered pairs of positive integers (m,n) with 1 < m < 100 and 1 < n < 100 such
that
ged(m + 1,n 4+ 1) = 10 ged(m, n).

Proposed by David Altizio

Answer: 52

Solution. The crucial claim is that ged(m,n) = 1. Indeed, suppose not, and let ged(m,n) = k > 1.
Then k | ged(m + 1,n + 1) as well, so k | m and k | m + 1 simultaneously. This contradicts k£ > 1. Hence
ged(m,n) = 1, which implies ged(m + 1,n + 1) = 10.

Now as m + 1 and n + 1 are both multiples of 10, they must come from the set
{9, 19, 29, 39, 49, 59, 69, 79, 89, 99}.

A quick inspection reveals that 9, 39, 69, and 99 are multiples of 3; 49 is a power of 7; and the remaining five
integers are prime. It follows that, upon writing

A = {10, 40, 70, 100} and B = {20, 30, 50, 60, 80, 90},

either both m + 1 and n + 1 lie in B or exactly one lies in A and exactly one lies in B.

This gives us a good way to count the answer by casing on m; if m+1 € A, then check all values of n+1 lying
in B, while if m + 1 € B, then check all values of n + 1 lying in A U B instead. Doing this and remembering
to take into account that m and n are ordered yields the correct answer of .

3. Points A(0,0) and B(1,1) are located on the parabola y = z2. A third point C is positioned on this parabola
between A and B such that AC = CB = r. What is r2?

Proposed by David Altizio
Answer: 5 — 25

Solution. Let C be the point (¢,t2). Then by the Distance Formula the equality AC = CB is equivalent
to
Prtt=r? =1t +Q-t3)2=2-20t+12) + (*+t*).
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Thus t? +t = 1. Solving yields ¢t = %‘/5, sot? = % This in turn implies

2
1-+/5 1-+5
2 _ 42 4 _
=ttt = — +< 5 >_5—2\/5.

. Let AA1B1C; be an equilateral triangle of area 60. Chloe constructs a new triangle AA;BoCy as follows.
First, she flips a coin. If it comes up heads, she constructs point As such that B; is the midpoint of Ay,C;. If
it comes up tails, she instead constructs As such that C; is the midpoint of AsB;. She performs analogous
operations on By and Cs. What is the expected value of the area of AAyByCo?

Proposed by David Altizio
Answer: 195

Solution. Observe that there are two possible configurations which can arise. The left configuration occurs
when either all coin flips are heads or all are tails, which happens with probability %. The right configuration
occurs in the other case, which happens with probability %.

Let K = 60 denote the area of the original equilateral triangle for simplicity. The left triangle decomposes
into the original triangle with area K and three congruent obtuse triangles with area 2K, and so its total area
is 7K. The right triangle is congruent to one of these obtuse triangles and thus has area 2K. It follows that
the expected area of the shaded triangle is

2K-%+7Kéz§[(:.

. On Misha’s new phone, a passlock consists of six circles arranged in a 2 x 3 rectangle. The lock is opened
by a continuous path connecting the six circles; the path cannot pass through a circle on the way between
two others (e.g. the top left and right circles cannot be adjacent). For example, the left path shown below
is allowed but the right path is not. (Paths are considered to be oriented, so that a path starting at A and
ending at B is different from a path starting at B and ending at A. However, in the diagrams below, the
paths are valid/invalid regardless of orientation.) How many passwords are there consisting of all six circles?

Proposed by Max Aires and Ani Chowdhury
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Solution. Number the circles in the top row 1,2, 3 and the circles in the bottom row 4,5,6. The condition
is equivalent to finding the number of permutations of (1,2,3,4,5,6) such that 1 and 3 are not adjacent and
4 and 6 are not adjacent.

We proceed using complementary counting and PIE. There are 6! = 720 total permutations. The number of
permutations with 1 and 3 next to each other is 5! x 2 = 240, and similarly the number of permutations with
4 and 6 next to each other is 240. Finally, the number of permutations with both adjacencies is 4! x 22 = 96.
It follows that the requested answer is

720 — (240 + 240 — 96) = [ 336 .

. Across all z € R, find the maximum value of the expression

sinx + sin 3x + sin bx.

Proposed by David Altizio

724/15
125

Answer:

Solution. Write sin x 4 sin 5z = 2 sin 3x cos 2z by the Sum to Product rules, so the expression to maximize
becomes sin 3z (1 + 2 cos 2z). Let ¢ = sinx. Note that

sin 3z = 3t — 4t = #(3 — 4t?) = t(1 + 2cos 22),

and so our expression miraculously becomes ¢(3 — 4¢%)2. Now let this equal S; then by AM-GM

2 a2\ 2 5
165’2216t2(3—4t2)2§<16t —|—45(3 4t )) :<152) ’

and so S < i : (%)5/2 = %5175 . Equality holds when z = arcsin <1£05)

. Suppose you start at 0, a friend starts at 6, and another friend starts at 8 on the number line. Every second,
the leftmost person moves left with probability i, the middle person with probability %, and the rightmost
person with probability % If a person does not move left, they move right, and if two people are on the same
spot, they are randomly assigned which one of the positions they are. Determine the expected time until you
all meet in one point.

Proposed by Misha Ivkov
Answer: 16

Solution. We claim that S, the sum of pairwise distances between the three people, is a different random
walk. Indeed, we can consider the change of the z-distance with each move:

Move | Probability | Change
LLL 1/24 0
LLR 1/24 4
LRL 1/12 0
LRR 1/12 4
RLL 1/8 -4
RLR 1/8 0
RRL 1/4 -4
RRR 1/4 0
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We then rewrite our problem as a walker starting at S = 4 and trying to reach 0. The walker stays put with
probability %, moves left 1 with probability %, and moves right with probability %. Let E[z,y] denote the
time to get from x to y. We are interested in E[4,0]. Furthermore, note that the time the walker stops for is
Geometric with probability %, so the expected stopping time is 2. Then we have the following recurrence for
E[L,0]:

E[1,0] = 2 + iE[Q,O} —a2q %(]E[Z 1+ E[1,0]) =2+ %11«:[1,0]

implying E[1,0] = 4. We used linearity of expectation here and noted that E[z,y] = E[z + 1,y + 1]. From
here, note that E[n, 0] = nE[1,0] so E[4,0] =[16].

. A positive integer n is brgorable if it is possible to arrange the numbers 1,1,2,2,...,n,n such that between
any two k’s there are exactly k& numbers (for example, n = 2 is not brgorable, but n = 3 is as demonstrated
by 3, 1, 2, 1, 3, 2). How many brgorable numbers are less than 20197

Proposed by Tudor Popescu
Answer: 1008

Solution. We claim that the only brgorable numbers n are those for which n =0 or 3 (mod 4).

First we show that a number of form 4k + 1 or 4k + 2 is not brgorable. Color the numbers in black and white
alternatively. Note that if a number is brgorable, then the positions of any two equal odd numbers must have
the same color, while the positions of any two equal even ones must have different colors. Therefore, we must
have an even number of odd numbers, so we have that n is of the form 4k or 4k + 3.

It remains to find constructions for these numbers. First suppose n = 4k; then the construction is

4k — 4,4k —6,...,2k 4k — 2,2k — 3,2k —5,...,1,4k — 1,1,3,...,2k — 3,
2k, 2k +2,..., 4k — 4,4k, 4k — 3,4k — 5,..., 2k + 1,4k — 2,2k — 2,2k — 4, ..,
2,2k — 1,4k — 1,2,4,...,2k — 2,2k + 1,2k +3,...,4k — 3,2k — 1, 4k.

For example, for k = 3 this yields the sequence
8,6,10,3,1,11, 1, 3,6,8,12,9, 7, 10, 4, 2, 5,11, 2,4, 7, 9, 5, 12.
Now suppose n = 4k — 1. Then the construction is

Ak — 4,4k —6,... 2k, 4k — 2,2k — 3,2k —5,..., 1,4k — 1,1,3,...,2k — 3,
2k, 2k +2,...,4k — 4,2k — 1,4k — 3,4k — 5,...,2k + 1,4k — 2,2k — 2,2k — 4,..., 2,
ok — 1,4k —1,2,4,...,2k — 2,2k + 1,2k +3,...,4k — 3.

For example, if £k = 2, then the sequence is
4,6,1,7,1,4,3,5,6,2,3,7,2,5.
Therefore, there are exactly 1008 brgorable numbers less than 2019.

. Let f : N — N be a bijection satisfying f(ab) = f(a)f(b) for all a,b € N. Determine the minimum possible
value of f(n)/n, taken over all possible f and all n < 2019.

Proposed by Vijay Srinivasan

.2
Answer: 5=

Solution. First, it is clear that f(1) =1 so f(n) > 1 for n > 1. Let P denote the set of primes. It is clear
that for a bijection g : P — P, there is a unique completely multiplicative bijection f: N — N with f|p = g.
We claim for any f satisfying the conditions of the problem, there is such a bijection g with f|» = g. Suppose
that for some prime p, f(p) is not prime. Then there are q,7 > 1 with f(p) = qr, so p = f~1(q)f~1(r)
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10.

11.

expresses p as a product of integers > 1, a contradiction. Thus f(P) C P. If there is a prime p that does
not appear in f(P), then p also does not appear in f(N), a contradiction since f is a bijection on the natural
numbers. So f(P) D P and so f|p is a bijection as desired.

Then for prime numbers p we have f(p) > 2 and for composite numbers m we have f(m) > 4. Thus, for
1 <n <2019, we have f(n)/n > | 55= | This bound is achieved, for example, when f(2) = 2017, f(2017) = 2,
and f(p) =p for all p € P\ {2,2017}.

Let AABC be a triangle with side lengths a, b, and ¢. Circle w4 is the A-excircle of AABC, defined as the
circle tangent to BC' and to the extensions of AB and AC past B and C respectively. Let 74 denote the
triangle whose vertices are these three tangency points; denote 7 and T¢ similarly. Suppose the areas of T4,
T, and To are 4, 5, and 6 respectively. Find the ratioa : b : c.

Proposed by David Altizio
Answer: 22:25:27

Solution. Let the tangency points of ws with BC, AC, and AB be A’, B, and C’ respectively, and denote
by I the incenter of AABC'. Note that a simple angle chase yields ZA'B’'C' = Z/BA'C’ = ZIBC and similarly
LA'C'B' = LICB, so ANA’B'C" ~ AIBC. The ratio of similitude of these triangles is

2ssin 4 25 [(s=b)(s—c)

a a be

As such the area Ty of T4 is

_ 12 [(s—b)(s—c) 27252r(57b)(5—c)7 K?
Ta= 29"\ 4 be N abc ~ 2R(s—a)’

This means that

K2 (TlA + TlB> =2R|[(s —a) + (s — b)] = 2Rc

and similar, so

2Rc 7=+ To(Tp+Ta)

Plugging in the numbers yields ¢ = % = 3—3 Similarly, % = g—? Therefore a : b:c=[22:25:27|

Let S be a subset of the natural numbers such that 0 € S, and for all n € N, if n is in S, then both 2n 41
and 3n + 2 are in S. What is the smallest number of elements S can have in the range {0,1,...,2019}?

a 2Ra 75tz Ta(Tp+7Tc)
C

Proposed by Cody Johnson
Answer: 47

Solution. Set N = 2019 for simplicity. Let f(n) =2n + 1 and 3n + 2. The key observation is that

flg(n)) = fBn+2) =6n+5=g@2n+1) = f(g(n)),

i.e. that f and g commute.

With this in mind, let
S={n>0:3p,g>0|n=f"(g?0))}

Observe that any set S satisfying the properties in the problem statement must contain all elements of S.
Furthermore, by commutativity of f and g, S is closed under f and g. It follows that S is the smallest set
satisyfing the problem constraints, where here “smallest” is referring to inclusion.
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12.

But now we may characterize all elements of S specifically, since
g1(0) =371—-1 and fP(37—1)=2P37—1.
It follows that an integer 0 < n < N is in § if and only if it can be written in the form 2P3% — 1 for some

p,q = 0.

Finally, to compute the answer, note that all such numbers are distinct, so we may partition {0,1,...,N}NS
based on the value of p. For a given p, write

202
2P39 — 1 < 2019 if and only if 2P < %

It follows that the number of elements of {0,1,..., N}NS in this form is [log,(2322)| +1, and so the requested
answer is

2020
> {logQ <3m>J +1=11+10+8+7+5+4+2=[47]

m>0

Call a convex quadrilateral angle-Pythagorean if the degree measures of its angles are integers w < z <y < z
satisfying

w2+x2+y2 = 22
Determine the maximum possible value of x + y for an angle-Pythagorean quadrilateral.
Proposed by Gunmay Handa and Vijay Srinivasan
Answer: 207
Solution. Let n = 180. We have the constraints

wH+r+y+z=2n and w? + 2?2 4+ % = 22
Set p=n — =z, ¢ =n — y for ease so that we have w + z = p + ¢ and hence also

(n—pP+n—q°={p+q9(z—-w).

Since z = p + g — w we have
(n—p)*+(n—q)?

p+q—2w=
p+q
and so solving for w gives
_ . n’-pg
w=n— ————.
p+q

If we set r = % then we want ordered pairs (p,q) for which 7 is an integer and n —r = w < z = n — p,
i.e. 7 > p. We now write p+ ¢ = S. So we want to find the minimal S for which there exists a p such that

n* —p(S —p)
S

is an integer > p. An AM-GM bound on n? — p(S — p) yields that S > [2n(v/2 — 1)] = 150. We see that
S = 150 gives solutions
(p. q) = (90,60), (120, 30)

but in both of these cases we find that w < 0. For § = 151, we see that r being an integer is equivalent to
151 | (n? + p?) which is impossible since 151 is a prime = 3 (mod 4). Similarly 152 can be eliminated since
19 | 152. Having S = 153 finally gives a solution, namely (w, z,y, z) = (4, 84,123, 149). So z + y is maximized

at 360 — 153 = [207 ]
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13. Points A, B, and C lie in the plane such that AB = 13, BC = 14, and CA = 15. A peculiar laser is fired
from A perpendicular to BC. After bouncing off BC, it travels in a direction perpendicular to CA. When it
hits C'A, it travels in a direction perpendicular to AB, and after hitting AB its new direction is perpendicular
to BC again. If this process is continued indefinitely, the laser path will eventually approach some finite
polygonal shape T,. What is the ratio of the perimeter of T, to the perimeter of AABC?

Proposed by David Altizio

. 168
Answer: 205

Solution. The shape Ty, is actually AXY Z, where X € AB, Y € BC, and Z € C'A such that ZY | BC,
YX 1L AB, and XZ | CA.

To prove this, for all positive integers n let d,, = AX,,, where X,, is the bouncing point of the laser on AB
after n turns. By going around the triangle and using right-triangle trig to compute the locations of other
bounce points, one sees that

dp+1 =c—cosB(a—cosC(b—d,cosA)) =M+ Nd,

for some universal constants M and N. Now because |N| < 1, the function x — M + Nz is a contraction,
and so by the Banach Fixed Point Theorem we see that the d,, converge to some fixed real number r. This
proves the claim. (Banach is not necessary here; noting that |d,,+1 — d,,| decays geometrically is good enough
too.)

We now propose three ways to finish.

e Geometric Finish: It is easy to see that AXY Z ~ AABC via an angle chase; for example, LAY Z =
90° — LAY B = ZABC'. These triangles are furthermore directly similar, and thus there exists a spiral
similarity sending AXY Z to AABC. Let P denote the center of this spiral similarity. Then /PZX =
/PAB, so quadrilateral AX PZ is cyclic, which in turn implies /PXZ = /PAZ = /PZY . Repeating
this argument cyclically yields /PAB = /PBC = /PCA = w, so in fact P is the first Brocard point of
AABC and w the Brocard angle.

To finish, remark that since Z is spirally sent to A under the spiral similarity, the ratio of the perimeters
of the two triangles is PZ : PA. But note that since AXPZ is cyclic, LZAPZ = LZAXZ = 90°, so this
expression is actually equal to

1 4K 168

cotA+cot B+cotC a2+ b2+ | 295 [

tanw =

e Geometrico-Trigonometric Finish: Let E be with AE | AB and DE 1 AC, where D is the foot of
A onto BC. Observe that Z = BE N AC, so since AYXZ ~ AADE ~ ABC A we have that

YZ YZ/AE _BZ/BE
AB  ABJAE  BC/AD’

But
BZ ABsin/BAZ BCsinA

ZE  AEsin/ZAE ADcosA’

whence

BZ/BE _ BCsifS—ingcosA _ ADsin A
BC/AD g BCsinA+ ADcos A’

Dividing through by sin A, multiplying by BC' in the numerator and denominator and using the fact

that AD = 4B-4Csind vie]dg

ADsin A B AD - BC 4K
BCsinA+ ADcos A BC2+ AB-ACcosA a2+ b2 + 2

by the Law of Cosines, as desired.
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e Trigonometric Finish: The real number r is the unique fixed point of f, i.e. the solution tor = M+ Nr.
The solution to this is r = %, and so, after deducing AXY Z ~ AABC as in the first solution, the
desired ratio is

XZ _rsinA _ (c—acosB+bcosBceosC)sinA  (bcos A+ bcosBcosC)sin A

BC b (14 cos Acos BcosC)b (1 +cosAcos BcosC)b
_ sinAsinBsinC' (v K () K
~ 1+cosAcosBcosC  2R?*(1+cosAcosBeosC) — R2(sin? A + sin® B 4 sin? ©)
4K
T2t

and so we have the same answer as above. Here (x) is due to the identity K = 2R?sin A sin B sin C' while
(*%) is due to the identity cos? A + cos? B + cos? C + 2cos Acos BcosC = 1.

14. Consider the following function:

procedure M(x)
if 0 <z <1 then
return z
return M(z? mod 23?)

Let f : N — N be defined such that f(x) = 0 if M(x) does not terminate, and otherwise f(x) equals the
number of calls made to M during the running of M(z), not including the initial call. For example, f(1) =0
and f(23!) = 1. Compute the number of ones in the binary expansion of

FO)+f) + f(2) + -+ f(22 - 1).

Proposed by Misha Ivkov and Theodore Li
Answer: 15

Solution. Note first that all numbers terminate and that the algorithm just returns if a number is even or
odd. So, let’s do those two cases separately.

First, we claim that the order of 3 modulo 2¥ is 2¥=2. Note that v (j!) < 2 — 3 if and only if j > 1. Hence
4J (ij_?’) =0mod 2¥iff j > 1. Then 32" ° = (4—1)2"" = —4x 28341 mod 2, s0 ordy (3) > 28~3. However,
we can adapt the same argument and find that 32°° = —4 x 2¥=2 + 1 = 1 mod 2* so ordyx (3) = 2+—2.

Define S = {3 mod 2* | 0 < i < 2¥~2}. Now note that at least one of 2% — 1,28=1 — 1,28=1 4 1 is not in S
since they all square to 1. Let m be one of the ones which is not in S. Then note that f(3°) = f(m x 37
except when ¢ = 0.

Further, note that f(1) =0 and f(m) = 1. Now let’s get an exact value for f(3%). Note that f(3) = 30 (since

we go 31,32, .. ,32i7 el 32" for a total of 30 iterations). Therefore, we can deduce that f(32"%) = 30 — a for
all odd b. Finally the sum we wish to find is 1 4 22351 f(3%). There are 22 such odd x, 22 such 2 which
are not divisible by 4, and so on. So in fact !
2301 30
142 ) f(3") =1+ a2"=3+29x2%
=1 a=1

The even case happens to be much easier. Let x = 2%b be even. Then we double the exponent at every
iteration. For example, if ¢ = 1, then we will go 220b, 221112,222174,...,225b32 which means f(2b) = 5 for
all odd b. Similarly, we can compute that f(4b) = f(8b) = 4. Continuing onward, we must have that
f(16b) = ... = f(128b) = 3. In general, there are 230 x such that f(z) =5, (22 — 1) x 22® with f(z) = 4,
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(24 — 1) x 22* with f(z) =3, (28 — 1) x 216 with f(z) = 2, and 2'® — 1 with f(z) = 1. Hence the total even
sum is
5x2%0 +12x 2% 445 x 24 + 510 x 210 4210 — 1

Therefore our number is
n=20x2"15%x2%0 4 12x922 +45x 2% +511 x 264+ 2

=33x 2% 145 x 22 +511x26+2
=236 4231 1 (25 423 122 1 20) x 220 (28 428 — 1) x 210 42
:236+231+229+227+226+225+223+.“+216+21

which has ones:
1000010101110111111110000000000000010.

Call a polynomial P prime covering if for every prime p, there exists an integer n for which p divides
P(n). Determine the number of ordered triples of integers (a,b,c), with 1 < a < b < ¢ < 25, for which
P(x) = (22 — a)(2? — b)(2? — ¢) is prime-covering.

Proposed by Vijay Srinivasan
Answer: 1194

Solution. We claim that the result holds iff at least one of a, b, ¢, or abc is a perfect square.

First we show that this condition works. If a is a perfect square, then setting n := y/a € N gives P(n) = 0,
and so in particular p | P(n) for all positive integers n. Analogous reasoning works when b and ¢ are squares.
Now suppose abc is a perfect square, and note that for any prime p

=(5)-G)6)G)
p p p p
Thus it is impossible for a, b, and ¢ to simultaneously not be quadratic residues modulo p, meaning there
must exist some n for which p | P(n).
The reverse direction is significantly trickier, and crucially makes use of the following lemma.

Lemma 1. Let p1,pa,--- ,pn be primes and ey, eq, - e, € {—1,1}. Then there exists a prime q with the
property that (%) =e; foralll <i<n.

Proof. For each 1 < i < n, let a; be some (nonzero) quadratic residue modulo p; if e; = 1 and let a; be some
nonzero nonquadratic residue modulo p; if e; = —1. Furthermore, set o = 5 iff there exists some ¢ with p; = 2
and e; = —1, and let a = 1 otherwise.

Now consider the system of equations
x =a (mod8),

r = (mod p;),

x =a, (modpy,).

Note that by CRT this system has a unique solution
=N (mod 8p;...pn)

(and in particular is not inconsistent if p; = 2 for some ). Furthermore, gcd(N,8p;...p,) = 1 since
ged(ay,p;) = 1 for all i. It follows by Dirichlet’s Theorem that there exists some prime ¢ satisfying this
system of congruences. We claim that this is the prime ¢ we seek.

To prove this, let ¢ be arbitrary. We case on the value of p;.
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o If p; = 2, then recall
(2) _J1  ifg=1,7 (mod 8),
q) |-1 ifg=3,5 (mod8).
But ¢ = a (mod 8), where o was 1 if e; =1 and « was 5 if e; = —1. Tt follows that (pl) =¢;.

e Now suppose p; > 3 is an odd prime. Note that ¢ = 1 (mod 4), so by the Law of Quadratic Reciprocity,

(pi> (q) = (=1)P=D=D/4 = 1
q bi

whence (%) = (ﬁ). In particular, (%) = 1 iff q is a quadratic residue modulo p;, which is exactly what

the condition z = a; (mod p;) forces.

We are done. O

We now proceed with the proof. Suppose that none of a, b, and ¢ are squares. Then WLOG assume they are
squarefree since in general for integers m and n and any prime p, it is true that (an?) = (%) Suppose abc is
not a square. Let {p1,p2,- - ,pn} be the set of primes dividing abe. Since abe is not a square, it follows that
one of these primes - WLOG let it be p; - divides exactly 1 or exactly 3 elements of the set {a,b,c}. If p;

divides all of a, b, and ¢, defining

e1 = —1 and eg=e3=---=¢, =1
guarantees the existence of a prime ¢ for which (2) = (%) = (£) = —1, and hence contradicts the assumption
that {P(n)} contains a multiple of ¢. So p; must divide exactly one of a, b, ¢; again WLOG suppose p; | a. If
b and ¢ share a prime factor (say p2), then define e; = —1 and e3 = e4 = --- =€, = 1. If b and ¢ are coprime,

WLOG suppose that ps | b and ps | ¢. Set
eo =e3=—1 and eg=¢€;=:--=¢e, = 1.

We can write @ = pipm,Pms - - - Pm,., and defining e; = —ep, €m, - - - €, Teveals that we can again find a prime
g which contradicts the assumption of the problem. So if abc is not a square, there is some prime ¢ for which
{P(n)} contains no multiples of q.

Now we proceed with the counting. We split into cases.

e The number of sets {a,b,c} which contain at least one perfect square is, by complementary counting,
equal to (235) — (230) = 1160.

e Now suppose a, b, and ¢ are all squarefree. The prime divisors of abc must come from the set {2,3,5,7,11};
else at least two of a, b, or ¢ must be divisible by a prime which is at least 13. Furthermore, all products
of one or two primes from this set lie in the set {1,2,...,25}. Hence the set {a,b, ¢} is either of the form
{p,q,pq} or {pq,pr,qr} for some distinct primes p, ¢, r; the number of such sets is thus (g) + (g’) = 20.

e Finally, suppose a, b, ¢ are all not perfect squares but at least one is not squarefree. The only integers
which are neither perfect squares nor squarefree with prime divisors in the set {2,3,5,7,11} are 23, 22 x 3,
22 x 5, and 2 x 3%2. A quick count yields 14 additional sets, namely

{17 27 8}7 {17 8’ 18}7 {37 67 8}7 {37 8’ 24}7 {57 87 10}7 {6? 87 ]‘2}’ {77 87 14}7
{8,10,20}, {8, 11,22}, {8,12,24},{2,6,12},{2,12,24},{5,12, 15}, and {7,12,21}.

It follows that the requested answer is 1160 + 34 =| 1194 |.



