
Combinatorics and Computer Science

1. Patrick tosses four four-sided dice, each numbered one through four. What’s the probability that their product
is a multiple of four?

Proposed by Patrick Lin

Answer: 13
16

Solution. Instead we can count the probability that the product is not a multiple of four. This means
that either there are no 2/4s or exactly one 2. The number of ways for this is 24 + 4 · 23 = 48. Hence the
probability that the product is a multiple of four is 1− 48

256 = 13
16 .

2. How many ways are there to color the vertices of a cube red, blue, or green such that no edge connects two
vertices of the same color? Rotations and reflections are considered distinct colorings.

Proposed by Patrick Lin

Answer: 114

Solution. Call the colors R, G, and B, and for the purposes of this solution identify the vertices of the
cube as 000, 001, ..., 111. Assume without loss of generality that 000 is R, then there are eight ways to color
its neighbors. In six of these, we may assume that 001 is G and both 010 and 100 are B. Then 011 and 101
are R, which leaves three possibilities for 110 and 111 together, and 3 · 6 · 3 = 54 colorings in this case.

In the other two cases, all of the neighbors of 000 are G. If 111 is also G, then each of 110, 101, 011 may be
either R or B, giving eight colorings. If 111 is not G, then 110, 101, and 011 are fixed by 111, giving two.
This case thus yields 3 · 2 · 10 = 60 colorings. So the answer is 54 + 60 = 114 .

3. How many ordered triples (a, b, c) of integers with 1 ≤ a ≤ b ≤ c ≤ 60 satisfy a · b = c?

Proposed by Misha Ivkov

Answer: 134

Solution. Fix c. If c is not a perfect square, then there are exactly 1
2d(c) ways to choose a, b where d(x)

denotes the number of divisors of x. Otherwise, there are 1
2 (d(c) + 1).

Hence the answer is 1
2 (
∑60

x=1 d(x) + 7). If we consider a 60 × 60 matrix with entry aij denoting if j|i, then
note that our sum is the sum of the rows of this matrix. We can count this instead as the sum of the columns:

60∑
x=1

d(x) =

60∑
x=1

⌊
60

x

⌋
This is much easier to count, and will give

60 + 30 + 20 + 15 + 12 + 10 + 8 + 7 + 6 · 2 + 5 · 2 + 4 · 3 + 3 · 5 + 2 · 10 + 1 · 30 = 261

Hence the total count is 1
2 (261 + 7) = 134.

4. Define a search algorithm called powSearch. Throughout, assume A is a 1-indexed sorted array of distinct
integers. To search for an integer b in this array, we search the indices 20, 21, . . . until we either reach the
end of the array or A[2k] > b. If at any point we get A[2k] = b we stop and return 2k. Once we have
A[2k] > b > A[2k−1], we throw away the first 2k−1 elements of A, and recursively search in the same fashion.
For example, for an integer which is at position 3 we will search the locations 1, 2, 4, 3.

Define g(x) to be a function which returns how many (not necessarily distinct) indices we look at when calling
powSearch with an integer b at position x in A. For example, g(3) = 4. If A has length 64, find

g(1) + g(2) + . . .+ g(64).



Proposed by Misha Ivkov

Answer: 808

Solution. Note that what powSearch does is determines the position of b in binary, MSB first. For all
except the last 1 bit, we overshoot by 1 index. For example, to determine the MSB of an element at index
15, we overshoot and examine 1, 2, 4, 8, 16. Hence if x = bkbk−1 . . . b1b0, then

g(x) = −1 +

k∑
i=0

bi +

k∑
i=0

(i+ 1)bi = −1 + 2

k∑
i=0

bi +

k∑
i=0

ibi.

Indeed, for x = 3 = 112 this gives −1 + 4 + 1 = 4.

Each of b0 . . . b5 appear in exactly half of the numbers in this range, and b6 appears in only one. Hence the
answer is

−1 · 64 + 2 · (6 · 32 + 1) + (0 + 1 + . . .+ 5) · 32 + 7 = 808 .

5. In the game of Ric-Rac-Roe, two players take turns coloring squares of a 3 × 3 grid in their color; a player
wins if they complete a row or column of their color on their turn. If Alice and Bob play this game, picking
an uncolored square uniformly at random on their turn, what is the probability that they tie?

Proposed by Patrick Lin

Answer: 5
14

Solution. Without loss of generality, suppose Alice goes first. We count how many of the
(
9
5

)
= 126

configurations result in ties; say Alice (or Bob) beats a configuration if they have a row or column in their
color.

First, observe that if Bob beats a configuration then Alice must also beat it, so it suffices to find the number
of configurations that Alice beats with her five squares. This is given by 6 ·

(
6
2

)
− 9 = 81, as we may fix a

row or column and then pick two additional squares, accounting for the cases where we have both a row and
column. The desired probability is therefore 1− 81

126 = 5
14 .

6. There are 100 lightbulbs B1, . . . , B100 spaced evenly around a circle in this order. Additionally, there are
100 switches S1, . . . , S100 such that for all 1 ≤ i ≤ 100, switch Si toggles the states of lights Bi−1 and Bi+1

(where here B101 = B1). Suppose David chooses whether to flick each switch with probability 1
2 . What is the

expected number of lightbulbs which are on at the end of this process given that not all lightbulbs are off?

Proposed by David Altizio

Answer: 25·299
298−1

Note: the original problem erroneously left out the condition that all lightbulbs initially are off. However, the
solution below does not depend on this fact, and it is easy to check that the computations remain the same
regardless of the initial configuration.

Solution. Let X denote the random variable which equals the number of lightbulbs on at the end of this
process, and let A be the event that at least one lightbulb is on. The crucial claim is that

E[X | A] =
E[X]

P(A)
;

indeed, this follows from the fact that E[X | Ā] = 0 when combined with the Law of Conditional Expectation.

Computing E[X] is easy: each lightbulb has probability 1
2 of being off, so by Linearity of Expectation E[X] =

100 · 12 = 50. It remains to compute the probability that not all bulbs are off. If instead all bulbs are off,
then all even-numbered switches must be either on or off, and similarly all odd-numbered switches must be
on or off. The position of the first and second switches uniquely determines the rest of the switches, and so
P(Ā) = 2−98. Plugging this back in yields a final answer of

25 · 299

298 − 1
≈ 50.00000000000000000000000000016.



7. Consider the set L of binary strings of length less than or equal to 9, and for a string w define w+ to be the
set {w,w2, w3, . . .} where wk represents w concatenated to itself k times. How many ways are there to pick
an ordered pair of (not necessarily distinct) elements x, y ∈ L such that x+ ∩ y+ 6= ∅?

Proposed by Misha Ivkov

Answer: 1250

Solution. We first show a key component of the proof: namely that xm = yn for strings x and y only if
x = zn and y = zm for some string z. First we show actually that xm = yn ⇒ xy = yx. Without loss of
generality let x = yw. Then

(yw)m = yn ⇒ (wy)m−1w = yn−1 ⇒ (wy)m = yn

so wy = yw and finally xy = ywy = yx as desired.

Now instead we show xy = yx implies our statement of zm, zn. Let’s do induction on |xy|. If |xy| = 2, then
|x| = |y| = 1⇒ x = y = z. Else, let |xy| = k. Then WLOG |x| ≥ |y|, so let x = yw. Then wy = yw and since
|wy| < |xy| we have w = z` and y = zm. Then x = z`+m as desired.

Let’s fix |z| = k. Then there are
⌊
9
k

⌋2
possibilities for the exponents n,m. Now let’s compute the number of

such z. Let f(d) denote the number of such strings of length d. Note that 2k =
∑

d|k f(d), so by Moebius
Inversion

f(d) =
∑
d|k

µ

(
k

d

)
2d.

(Manually solving for the values of f using these equations gives the same result.) Finally the answer is

9∑
k=1

⌊
9

k

⌋2∑
d|k

µ

(
k

d

)
2d

 = 1250.

Remark. We can also compute the sum with a similar method to A7.

8. Consider the following graph algorithm (where V is the set of vertices and E the set of edges in G):

def s (G) :
i f |V | = 0 : return t rue
for edge (u , v ) in E:

H = G − u − v
i f s (H) = true : return t rue

return f a l s e

where G−u− v means the subgraph of G which does not contain vertices u, v and all edges using them. How
many graphs G with vertex set {1, 2, 3, 4, 5, 6} and exactly 6 edges satisfy s(G) being true?

Proposed by Misha Ivkov

Answer: 2790

Solution. This algorithm returns true if and only if the graph has a perfect matching. Clearly if the graph
does have a perfect matching {e1, e2, . . . , en} then the algorithm will explore this state space. Now assume
the algorithm returns true. We can modify it so that s(G) returns the specific edges removed along the path
to no vertices. Then it is easy to see that returning true implies a perfect matching.

There are
(6
2)(

4
2)

3! = 15 possible perfect matchings in a graph with 6 vertices. Then we can use PIE. Note that
every pair of perfect matchings intersects in either 0 or 1 edge, and every triple of perfect matchings uses
more than 6 edges. There are 15∗6

2 = 45 ways to choose two perfect matchings that intersect: this follows



because every perfect matching shares an edge with exactly 6 others. In addition, there are
(
15
2

)
− 45 = 60

other perfect matching pairs. Then the answer is

15

(
12

3

)
− 45

(
10

1

)
− 60

(
9

0

)
= 2790.

9. There are 15 cities, and there is a train line between each pair operated by either the Carnegie Rail Corporation
or the Mellon Transportation Company. A tourist wants to visit exactly three cities by travelling in a loop,
all by travelling on one line. What is the minimum number of such 3-city loops?

Proposed by Max Aires

Answer: 88

Solution. We solve for general n. Let C be the number of loops for the CRC, M be the number for the
MTC, and P be the number of loops which have at least one of each rail company. Then C +M + P =

(
n
3

)
.

Let ri denote the number of cities that city i is connected to via a CRC line. Then note that we have
ri(n − 1 − ri) ways to choose these neighbors and produce a triangle which is not on the same line. Then,
P = 1

2

∑n
i=1 ri(n− 1− ri) since we overcount the number of triangles by the endpoints. Hence,

C +M =

(
n

3

)
− 1

2

n∑
i=1

ri(n− 1− ri)

Suppose from here than n is odd for simplicity. Note that we want to minimize C + M ⇐⇒ maximize P .
Note that ri(n− 1− ri) is maximized where ri = n−1

2 , so plugging this in gives that

C +M ≥
(
n

3

)
− n(n− 1)2

8

Then plugging in n = 15 gives C+M ≥ 87.5. From here, we construct a solution where C+M = 88. Consider
the complete bipartite graph on 14 vertices K7,7. Denote it as having vertices a1, . . . , a7, b1, . . . , b7. Now cut
the edges (a1, b1), (a2, b2), (a3, b3), and add a vertex m which is connected to a1, b1, a2, b2, a3, b3. This will be
our CRC lines, and the remaining edges of K15 (complete graph on 15 vertices) are the MTC lines. Then
note that M = 2

(
7
3

)
+ 2
(
4
2

)
= 82, and C = 32 − 3 = 6 giving a total of 88.

10. Define a rooted tree to be a tree T with a singular node designated as the root of T . (Note that every node
in the tree can have an arbitrary number of children.) Each vertex adjacent to the root node of T is itself the
root of some tree called a maximal subtree of T . Say two rooted trees T1 and T2 are similar if there exists
some way to cycle the maximal subtrees of T1 to get T2. For example, the first pair of trees below are similar
but the second pair are not. How many rooted trees with 2019 nodes are there up to similarity?

Proposed by Gunmay Handa and Misha Ivkov

Answer:
(4036
2018)+(2018

1009)+8064

4036

Solution. We first give an explicit bijection between equivalence classes of trees with n + 1 nodes and
equivalence classes necklaces with 2n beads having n white and n black under rotation. The idea is that a
downstep in the traversal of the tree will produce a white bead on the necklace and an upstep produces a
black bead. Then it is clear that cyclic rotation preserves the necklace.

We use Burnside’s to count the number of possible ways to orient this necklace. Note that shifting by k means
that a0 = ak = a2k = . . . = amk for all m. If k is odd, then we will have that a0 = a1 = . . . a2n−1. Now



consider k with gcd(k, 2n) = 2d. Then we will have a0 = a2d = a4d = . . . = a2md. Similar equivalence classes
exist for each value between 0 and 2d−1. Then there are

(
2d
d

)
ways to choose d equivalence classes to be black

and d to be white. From here, there are φ(n/d) ways to choose such a k. Hence by Burnside’s, the answer is

1

2n

∑
d|n

φ
(n
d

)(2d

d

)

wherein we can plug in 2018 for n.


