CMIMD 2019

Algebra and Number Theory Solutions

1. Let a1, as, ..., a, be a geometric progression with a; = v/2 and as = /3. What is

a1 + as013 o

a7 + azong
Proposed by Xiao Liu
Answer: %
Solution. Let r = %2 = 3 denote the ratio between consecutive terms of the geometric progression. Then

ay V2
_ 2.6 d _ .6
a7 =T"a1 and az019 = 7 A2013, SO

a1 +az13 _ artagms 1 E
ar +azre  79(a1 +ago1z) ¢
2. For all positive integers n, let f(n) return the smallest positive integer & for which % is not an integer. For

example, f(6) = 4 because 1, 2, and 3 all divide 6 but 4 does not. Determine the largest possible value of
f(n) as n ranges over the set {1,2,...,3000}.

Proposed by Gunmay Handa

Solution. Note that f(n) > k if and only if n is divisible by every integer between 1 and k — 1, i.e. n is
divisible by lem(1,2, ...,k — 1). Now notice that

lem(1,2,...,10) = 2520  but  lem(1,2,...,10,11) = 27720.
Thus N = 2520 satisfies f(/N) = 11 and no integer n < 3000 can have f(n) > 12, meaning the answer is
3. Let P(z) be a quadratic polynomial with real coefficients such that P(3) = 7 and
P(x) = P(0) + P(1)z + P(2)2?
for all real z. What is P(—1)?
Proposed by David Altizio

Answer: %

Solution. Plugging = = 1 and x = 2 into the given equality yields the system of equations
P(1) = P(0)+ P(1)+ P(2) and P(2) = P(0) +2P(1) + 4P(2).

The first equality simplifies to P(0) = —P(2), and plugging this into the second equation yields P(1) = —P(2).
Thus P(z) = t(2? —  — 1) for some t € R. Now plugging in = 3 yields t = £, and so P(—1) =| |
Remark. One can actually construct for any n a family of polynomials P such that

P(z) = P(0)+ P(L)x + - + P(n)a"
for every z. This is because by plugging in k = 0,1,...,n we obtain that

P(k)=P(0)+ P(L)k+---+ P(k)k"

for all such k. Writing this as a linear system of equations in P(0), P(1), ..., P(k) gives the system AZ = &
for Z= (P(0) P(1) ... P(n)) and
10 0 - 0
1 1 1
A1 2 4 2n
1 n n? n"
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It is trivial to see that A — I has rank at most n — 1 (due to the top row consisting of only zeroes), and so
this system has a one-parameter family of solutions. Constructing the resulting polynomial from the values
of P(0),..., P(n) can be done through Lagrange Interpolation.

. Determine the sum of all positive integers n between 1 and 100 inclusive such that

ged(n, 2" —1) = 3.

Proposed by David Altizio
Answer: 360

Solution. First note that if n is such a positive integer, then 3 | n and 3 | 2™ — 1. The former statement
implies n is divisible by 3, while the latter statement implies that 2" =1 (mod 3) < 2 | n. Thus n = 6k for
some positive integer 1 < k < 16. Note that it is impossible for ged(n, 2™ — 1) to be even, so it remains to
show that the k£ does not introduce any new factors into the greatest common divisor. We now case.

e First note that k = 1 yields ged(6,2° — 1) = ged(6,63) = 3, so n = 6 works.

e Now suppose k = p’ for some prime p. Note that by Fermat’s Little Theorem, 2P = 2 (mod p), so in
particular
1 —1

' =) =22 =... =2 (mod p).

Thus 2" — 1 = 2% — 1 =63 (mod p); this forces p ¢ {3,7}. As a result, we obtain seven new values of n,
namely n = 6k for k € {2,4,5,8,11,13,16}. Note also that from this analysis we obtain that k& cannot
be divisible by 3 or 7.

o Surprisingly, this leaves only k = 10 left. But this fails too, as 260 — 1 is divisible by 2* — 1 = 15, and so
5 divides the greatest common divisor.

We thus have 8 integers total whose sum is .

. Let z,, be the smallest positive integer such that 7" divides 22 — 2. Find z1 + 22 + z3.
Proposed by Cody Johnson

Answer: 121

Solution. First remark that #7 = 2 (mod 7) implies z1 = 3,4 (mod 7), so z; = 3.
Now to compute x2, note that 22 = 2 (mod 49) certainly implies 22 = 2 (mod 7), so at the very least z = 3,4
(mod 7). Let © = Ty +r, where y € {0,1,...,6} and r € {3,4}. Then

2=22 = (Ty+r)? = ldyr +r* (mod 49).

In the r = 3 case this simplifies to 42y = —7 (mod 49), so y = 1 (mod 7). The r = 4 case is analogous and
leads to y =5 (mod 7). It follows that the solutions to 2 =2 (mod 49) are z = +10 (mod 49), so z2 = 10.
In a similar fashion, note that 2> = 2 (mod 73) certainly implies z = £10 (mod 49). Thus we may let
x =49y + r for r € {10,39} and y € {0,1,2,3,4,5,6}, which implies

2=1a2 =49y + )2 =98yr + 7> (mod 7).
Solving this similarly yields (r,y) = (10,2) and (r,y) = (39,4); thus the solutions to #? = 2 (mod 73) are
x = £108 (mod 73), so x3 = 108.
Allin all, 21 + 22 + 23 = 3+ 10 + 108 =121 ]

Remark. This technique can be used to prove that 22 =2 (mod 7") has a solution for all positive integers n.
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6. Let a,b and c be the distinct solutions to the equation 2 — 222 + 3z — 4 = 0. Find the value of

1 1 1
a(b? + ¢ — a?) + b(c? 4 a? — b?) + c(a? +b% —?)

Proposed by Gunmay Handa

Answer: %

Solution. Note that
a2+ b+ =(a+b+c)* —20ab+bctca)=2%—-2-3=-2.

Thus
1 1 -1

a(? +c2 —a?)  a(—2—2a2) 2a(l +a?)’

However, observe that

~1 ~1 -1 —(a—1) 1—a

2a(1 + a?) - 2a0+2(2a%2 —3a+4) 4(a®-a+2) 4@®-a+2)(a—1) 8

whence the desired answer is simply

5 3 8 8 B
OR
Solution. As above, we have
1 1 a1 oara 1] 1
a4+ —a?)  a(—2-2a?) 2a(l1+a?) 4|a+i a—i 2a

It follows that, upon letting F(r) = - + -1 + L it suffices to compute §F(0) — 1 (F(i) + F(—i)).

r—a r—c’

We now claim that
3r2 —4r +3

3 —2r2+3r—4
There are several ways to prove this fact, but perhaps the most elementary is through direct expansion, as
one may write

F(r)= for all r ¢ {a,b,c}.

1 1 1 (a—r)b—r)+b—7)(c—r)+(c—r)(a—T)
a—r+b—r+c—r7 (a—r)b—7r)(c—71)
_ab+betca—2r(a+b+c)+3r  3ri—4r+3
(a—=r)b—r)(c—7) o3 —2r243r — 4

It is now a work of computation to derive the answer of .

Remark. The astute reader may recognize that F(r) = 1;/((:)), where P(z) = 2% — 222 4+ 3z — 4. This is no

coincidence, and it is an instructive exercise in one-dimensional calculus to prove this using the Product Rule.

7. For all positive integers n, let
Fm) =Y k) |2 -
k=1

Compute f(2019) — f(2018).
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Proposed by David Altizio
Answer: 11431

Solution. The crucial claim is that

Z ged(s, t).

(s,t)€[n]?
To prove this, for each integer k let
Sk = {(i,§) € [n]* | both i and j are divisible by k}.

It is easy to see that |Si| = [%]?, so

Sew|E =Y Y eisn- ¥ Y e s,

k=1 k=1 (s,t)€[n]2 (s,t)€[n]? k=1

For fixed (s,t) € [n]?, the inner sum runs over all k for which k | s and k | ¢ simultaneously, i.e. k | ged(s, ).

Thus in fact the sum equals
YooY elk)= Y sd(s)
(s,t)€[n]? d|ged(s,t) (s,t)€[n]?

as desired, where in the last step we use the well-known equality »_,,, ¢(d) = n. In turn, f(2019) — f(2018)
only sums over all pairs (4,5) for which either ¢ = 2019 or j = 2019, which means the desired sum is
23722 ged(j, 2019) — 2019.

One can evaluate this sum using a bit of convolution trickery (see the discussion for 2015 Putnam A3 for
more information), but it is also not bad to compute explicitly. Specifically, note that 2019 = 3 - 673, so the
summand is either 1, 3, 673, or 2019. It takes these values precisely ©(2019) = 1344, 672, 2, and 1 times

respectively, and so
2019

> ged(5,2019) = 1- 1344 + 3 - 672 + 673 - 2+ 2019 = 6725.

j=1
It follows that the desired answer is 2 - 6725 — 2019 =| 11431 |.
. It is given that the roots of the polynomial P(z) = 22019 — 1 can be written in the form z;, = x), + iy for
1 <k <2019. Let @ denote the monic polynomial with roots equal to 2z + iy for 1 < k < 2019. Compute

Q(-2).
Proposed by David Altizio

1 32019
Answer: 7%
Solution. Recall that for all k& we have x) = Z’“;T’“ and iy, = Z"ga, SO
, 3z +z 3z +1
2x + iy = k k2% .
2 2Zk
Thus

Q(-2) = ﬁ) (—2 dt 1) G Vi s L R

] 2Zk 22019 ] 2k
2019
1 32019 L 1+ 32019
k=1
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9. Let ag = 29, by = 1 and

10.

2019
Ap+1 = Qp +an—1- bn 5 bn+1 - bnbn—l

for n > 1. Determine the smallest positive integer k for which 29 divides ged(ag, by — 1) whenever aq, by are
positive integers and 29 does not divide b;.

Proposed by Vijay Srinivasan
Answer: 168
Solution. Note that the first equation simplifies modulo 29 to
i1 = Qp + A1 - bi (mod 29).

Upon making the shift b, — b2 (which doesn’t break the problem statement as the map z + x® is injective
modulo 29), the second recurrence is preserved, so we will instead work with the recurrence relation

Gpt1 = Ap + Gp—1 - by (mod 29).

Now by = 1 combined with an induction argument yields b, = ¢ for ¢ = b;. As a result, the first equation
rewrites as
Uni1 = p + ap_1c™  (mod 29).

If a; = 0 (mod 29), then all terms of the sequence are divisible by 29. Otherwise, we can assume a; = 1 by
homogeneity. We now claim that
F,
_ g cm—1
Qp = E ¢ =——7

k<F,

To prove this, we use strong induction on n. The base cases of n = 0 and n = 1 are easy. Now for the
inductive step, assume the result holds for all £ < n. Then by the inductive hypothesis,

()
Ungl = Gp + ap_1cfm = E &+t E = E *+ E k= E '  (mod 29),
k<Fy, k<Fp_1 k<Fp, F,<k<Fni1 k<Fpi1

where in (x) we crucially use the fact that every positive integer has a unique Zeckendorf representation.

We now split into cases.

o If ¢ # 1 (mod 29), it suffices to have ¢f» = 1 (mod 29). By taking c to be a primitive root mod 29
(¢ = 2, for instance), this is equivalent to 28 | F,,, implying n is divisible by lem(6, 8) = 24.

e If ¢ = 1, then the sum is congruent to F,, modulo 29, and so it suffices to find the smallest n for which
29 | F,,. This after some computation is 14.

Combining our two cases shows that the answer is lem(14,24) = [ 168].

Determine the number of positive integers 2 < n < 50 such that all coefficients of the polynomial

(:E‘p(") — 1) - H (x—k)

1<k<n
ged(k,n)=1

are divisible by n.
Proposed by Manuel Fernandez
Answer: 19

Solution. The crucial claim is that if n # 4, then n is either prime or twice a Fermat prime.
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Note that the result holds for n = 2, and n = 4, so assume n ¢ {2,4}. First note that by looking at the
constant term of this polynomial, we must have

H k=-1 (mod n),

1<k<n
ged(k,n)=1

where in particular we use the fact that ¢(n) is even. By HMMT 2016 Algebra #8, this means n is either
P, or 2pF for some odd prime p and some integer k > 1; in particular, there must exist a primitive root

modulo n.

In the n = p* case, assume k > 2. Then consider the power sums

Sy = Z jg

1<j<n
ged(j,n)=1

modulo p*. Note that Sy = 0 (mod n) for 1 < ¢ < p —2: if g is a generator of the multiplicative group
(Z/p*Z)*, then
e(p*)-1 ‘ g&P(Pk) 1

4] — k
g’ ==—>——=0 (mod p").

However, S,_1 is not zero; the following lemma is crucial to proving this claim.

Lemma 1. For all positive integers k,

e

P

R

(mod p*).

<.
—

Proof. The following proof of this lemma is based on alifenix-’s solution to USA December EGMO TST
2019 #3 on the Art of Problem Solving fora. We proceed by induction on k. For k = 1 the result follows by
Fermat’s Little Theorem. For the inductive step, write

pF Tt p—1 p*
D= ) kg
j=1 i=0 j=1

The crucial fact we need is that the inner sum is constant modulo p* (i.e. it doesn’t change as i changes).
Indeed,

k pk

(@p" +5)r =Y (P +ilp = Dp"P?)  (mod pb);

1 j=1

hS]

<.
I

the left sum is equal to p*~1(p — 1) by our IH, while the right term is zero due to the above primitive root
argument. Hence

k41
p+

S i t=p o) =p"(p—1) (mod pFth),
=1

and so we are done. O

As a result,

e

pk:—l

Spor=D P =pr Y P =p" T p - 1) #£0 (mod pt),
j=1 j=1

where in the last step we use the IH on both terms and the fact that p — 1 > 2. Thus the coefficient of 2P~ is

nonzero modulo p*, and so k > 1 gives a contradiction. We must have & = 1, and in that case the statement

is well-known to be true.



CMIMD 2019

Now we proceed with the 2p* case. By Chinese Remainder Theorem, the congruence in the problem statement
must hold modulo 2. But in this case the product collapses to

[I @-r= J[ @-1=@-1> (mod2).
1<k<n 1<k<n
ged(k,n)=1 ged(k,n)=1

Now write ¢(2p*) = s - 2t where s is odd. Then
t]S t
(x— 1)‘9(2pk) = [(x —1)2 ] = (2% —1)° (mod 2).

This cannot equal 2% — 1 modulo 2 unless s = 1, i.e. p*~1(p — 1) has no odd factors. It follows that k = 1
and p — 1 = 2¢, meaning that n is twice a Fermat prime. It remains to show that such a p works; but this
follows from the fact that n is even iff n + p is odd, and so modulo p this reduces to the previous case.

Finally, within the range [1,50], there are 15 prime numbers and three integers which are twice a Fermat
prime (6, 10, and 34). Remembering to add the 4 back in, it follows that the desired count is .



