
Algebra and Number Theory Solutions

1. Let a1, a2, . . ., an be a geometric progression with a1 =
√

2 and a2 = 3
√

3. What is

a1 + a2013
a7 + a2019

?

Proposed by Xiao Liu

Answer: 8
9

Solution. Let r = a2

a1
=

3√3√
2

denote the ratio between consecutive terms of the geometric progression. Then

a7 = r6a1 and a2019 = r6a2013, so

a1 + a2013
a7 + a2019

=
a1 + a2013

r6(a1 + a2013)
=

1

r6
=

8

9
.

2. For all positive integers n, let f(n) return the smallest positive integer k for which n
k is not an integer. For

example, f(6) = 4 because 1, 2, and 3 all divide 6 but 4 does not. Determine the largest possible value of
f(n) as n ranges over the set {1, 2, . . . , 3000}.

Proposed by Gunmay Handa

Solution. Note that f(n) ≥ k if and only if n is divisible by every integer between 1 and k − 1, i.e. n is
divisible by lcm(1, 2, . . . , k − 1). Now notice that

lcm(1, 2, . . . , 10) = 2520 but lcm(1, 2, . . . , 10, 11) = 27720.

Thus N = 2520 satisfies f(N) = 11 and no integer n ≤ 3000 can have f(n) ≥ 12, meaning the answer is 11

3. Let P (x) be a quadratic polynomial with real coefficients such that P (3) = 7 and

P (x) = P (0) + P (1)x + P (2)x2

for all real x. What is P (−1)?

Proposed by David Altizio

Answer: 7
5

Solution. Plugging x = 1 and x = 2 into the given equality yields the system of equations

P (1) = P (0) + P (1) + P (2) and P (2) = P (0) + 2P (1) + 4P (2).

The first equality simplifies to P (0) = −P (2), and plugging this into the second equation yields P (1) = −P (2).

Thus P (x) = t(x2 − x− 1) for some t ∈ R. Now plugging in x = 3 yields t = 7
5 , and so P (−1) = 7

5 .

Remark. One can actually construct for any n a family of polynomials P such that

P (x) = P (0) + P (1)x + · · ·+ P (n)xn

for every x. This is because by plugging in k = 0, 1, . . . , n we obtain that

P (k) = P (0) + P (1)k + · · ·+ P (k)kn

for all such k. Writing this as a linear system of equations in P (0), P (1), . . . , P (k) gives the system A~x = ~x
for ~x = (P (0) P (1) . . . P (n)) and

A =


1 0 0 · · · 0
1 1 1 · · · 1
1 2 4 · · · 2n

...
...

...
. . .

...
1 n n2 · · · nn

 .



It is trivial to see that A − I has rank at most n − 1 (due to the top row consisting of only zeroes), and so
this system has a one-parameter family of solutions. Constructing the resulting polynomial from the values
of P (0),. . ., P (n) can be done through Lagrange Interpolation.

4. Determine the sum of all positive integers n between 1 and 100 inclusive such that

gcd(n, 2n − 1) = 3.

Proposed by David Altizio

Answer: 360

Solution. First note that if n is such a positive integer, then 3 | n and 3 | 2n − 1. The former statement
implies n is divisible by 3, while the latter statement implies that 2n ≡ 1 (mod 3) ⇔ 2 | n. Thus n = 6k for
some positive integer 1 ≤ k ≤ 16. Note that it is impossible for gcd(n, 2n − 1) to be even, so it remains to
show that the k does not introduce any new factors into the greatest common divisor. We now case.

• First note that k = 1 yields gcd(6, 26 − 1) = gcd(6, 63) = 3, so n = 6 works.

• Now suppose k = p` for some prime p. Note that by Fermat’s Little Theorem, 2p ≡ 2 (mod p), so in
particular

2p
`

≡ (2p)p
`−1

≡ 2p
`−1

≡ · · · ≡ 2 (mod p).

Thus 2n − 1 ≡ 26 − 1 ≡ 63 (mod p); this forces p /∈ {3, 7}. As a result, we obtain seven new values of n,
namely n = 6k for k ∈ {2, 4, 5, 8, 11, 13, 16}. Note also that from this analysis we obtain that k cannot
be divisible by 3 or 7.

• Surprisingly, this leaves only k = 10 left. But this fails too, as 260 − 1 is divisible by 24 − 1 = 15, and so
5 divides the greatest common divisor.

We thus have 8 integers total whose sum is 360 .

5. Let xn be the smallest positive integer such that 7n divides x2
n − 2. Find x1 + x2 + x3.

Proposed by Cody Johnson

Answer: 121

Solution. First remark that x2
1 ≡ 2 (mod 7) implies x1 ≡ 3, 4 (mod 7), so x1 = 3.

Now to compute x2, note that x2 ≡ 2 (mod 49) certainly implies x2 ≡ 2 (mod 7), so at the very least x ≡ 3, 4
(mod 7). Let x = 7y + r, where y ∈ {0, 1, . . . , 6} and r ∈ {3, 4}. Then

2 ≡ x2
n ≡ (7y + r)2 ≡ 14yr + r2 (mod 49).

In the r = 3 case this simplifies to 42y ≡ −7 (mod 49), so y ≡ 1 (mod 7). The r = 4 case is analogous and
leads to y ≡ 5 (mod 7). It follows that the solutions to x2 ≡ 2 (mod 49) are x ≡ ±10 (mod 49), so x2 = 10.

In a similar fashion, note that x2 ≡ 2 (mod 73) certainly implies x ≡ ±10 (mod 49). Thus we may let
x = 49y + r for r ∈ {10, 39} and y ∈ {0, 1, 2, 3, 4, 5, 6}, which implies

2 ≡ x2
n ≡ (49y + r)2 ≡ 98yr + r2 (mod 73).

Solving this similarly yields (r, y) = (10, 2) and (r, y) = (39, 4); thus the solutions to x2 ≡ 2 (mod 73) are
x ≡ ±108 (mod 73), so x3 = 108.

All in all, x1 + x2 + x3 = 3 + 10 + 108 = 121 .

Remark. This technique can be used to prove that x2 ≡ 2 (mod 7n) has a solution for all positive integers n.



6. Let a, b and c be the distinct solutions to the equation x3 − 2x2 + 3x− 4 = 0. Find the value of

1

a(b2 + c2 − a2)
+

1

b(c2 + a2 − b2)
+

1

c(a2 + b2 − c2)
.

Proposed by Gunmay Handa

Answer: 1
8

Solution. Note that

a2 + b2 + c2 = (a + b + c)2 − 2(ab + bc + ca) = 22 − 2 · 3 = −2.

Thus
1

a(b2 + c2 − a2)
=

1

a(−2− 2a2)
=

−1

2a(1 + a2)
.

However, observe that

−1

2a(1 + a2)
=

−1

2a + 2(2a2 − 3a + 4)
=

−1

4(a2 − a + 2)
=

−(a− 1)

4(a2 − a + 2)(a− 1)
=

1− a

8

whence the desired answer is simply

1− a

8
+

1− b

8
+

1− c

8
=

3− a− b− c

8
=

1

8
.

OR

Solution. As above, we have

1

a(b2 + c2 − a2)
=

1

a(−2− 2a2)
=

−1

2a(1 + a2)
=

1

4

[
1

a + i
− 1

a− i

]
− 1

2a
.

It follows that, upon letting F (r) = 1
r−a + 1

r−b + 1
r−c , it suffices to compute 1

2F (0)− 1
4 (F (i) + F (−i)).

We now claim that

F (r) =
3r2 − 4r + 3

r3 − 2r2 + 3r − 4
for all r /∈ {a, b, c}.

There are several ways to prove this fact, but perhaps the most elementary is through direct expansion, as
one may write

1

a− r
+

1

b− r
+

1

c− r
=

(a− r)(b− r) + (b− r)(c− r) + (c− r)(a− r)

(a− r)(b− r)(c− r)

=
ab + bc + ca− 2r(a + b + c) + 3r2

(a− r)(b− r)(c− r)
=

3r2 − 4r + 3

r3 − 2r2 + 3r − 4
.

It is now a work of computation to derive the answer of 1
8 .

Remark. The astute reader may recognize that F (r) = P ′(r)
P (r) , where P (x) = x3 − 2x2 + 3x − 4. This is no

coincidence, and it is an instructive exercise in one-dimensional calculus to prove this using the Product Rule.

7. For all positive integers n, let

f(n) =

n∑
k=1

ϕ(k)
⌊n
k

⌋2
.

Compute f(2019)− f(2018).



Proposed by David Altizio

Answer: 11431

Solution. The crucial claim is that

f(n) =
∑

(s,t)∈[n]2
gcd(s, t).

To prove this, for each integer k let

Sk = {(i, j) ∈ [n]2 | both i and j are divisible by k}.

It is easy to see that |Sk| = bnk c
2, so

n∑
k=1

ϕ(k)
⌊n
k

⌋2
=

n∑
k=1

∑
(s,t)∈[n]2

ϕ(k)1Sk
(s, t) =

∑
(s,t)∈[n]2

n∑
k=1

ϕ(k)1Sk
(s, t).

For fixed (s, t) ∈ [n]2, the inner sum runs over all k for which k | s and k | t simultaneously, i.e. k | gcd(s, t).
Thus in fact the sum equals ∑

(s,t)∈[n]2

∑
d|gcd(s,t)

ϕ(k) =
∑

(s,t)∈[n]2
gcd(s, t)

as desired, where in the last step we use the well-known equality
∑

d|n ϕ(d) = n. In turn, f(2019)− f(2018)

only sums over all pairs (i, j) for which either i = 2019 or j = 2019, which means the desired sum is

2
∑2019

j=1 gcd(j, 2019)− 2019.

One can evaluate this sum using a bit of convolution trickery (see the discussion for 2015 Putnam A3 for
more information), but it is also not bad to compute explicitly. Specifically, note that 2019 = 3 · 673, so the
summand is either 1, 3, 673, or 2019. It takes these values precisely ϕ(2019) = 1344, 672, 2, and 1 times
respectively, and so

2019∑
j=1

gcd(j, 2019) = 1 · 1344 + 3 · 672 + 673 · 2 + 2019 = 6725.

It follows that the desired answer is 2 · 6725− 2019 = 11431 .

8. It is given that the roots of the polynomial P (z) = z2019 − 1 can be written in the form zk = xk + iyk for
1 ≤ k ≤ 2019. Let Q denote the monic polynomial with roots equal to 2xk + iyk for 1 ≤ k ≤ 2019. Compute
Q(−2).

Proposed by David Altizio

Answer: −1 + 32019

22018

Solution. Recall that for all k we have xk = zk+zk
2 and iyk = zk−zk

2 , so

2xk + iyk =
3zk + zk

2
=

3z2k + 1

2zk
.

Thus

Q(−2) =

2019∏
k=1

(
−2− 3z2k + 1

2zk

)
=

(−1)2019

22019

2019∏
k=1

3z2k + 4zk + 1

zk

= − 1

22019

2019∏
k=1

(3zk + 1)(zk + 1) = −32019

22019
P (− 1

3 )P (−1) = −1 + 32019

22018
.



9. Let a0 = 29, b0 = 1 and
an+1 = an + an−1 · b2019n , bn+1 = bnbn−1

for n ≥ 1. Determine the smallest positive integer k for which 29 divides gcd(ak, bk − 1) whenever a1, b1 are
positive integers and 29 does not divide b1.

Proposed by Vijay Srinivasan

Answer: 168

Solution. Note that the first equation simplifies modulo 29 to

an+1 ≡ an + an−1 · b3n (mod 29).

Upon making the shift bn 7→ b3n (which doesn’t break the problem statement as the map x 7→ x3 is injective
modulo 29), the second recurrence is preserved, so we will instead work with the recurrence relation

an+1 ≡ an + an−1 · bn (mod 29).

Now b0 = 1 combined with an induction argument yields bn = cFn for c = b1. As a result, the first equation
rewrites as

an+1 ≡ an + an−1c
Fn (mod 29).

If a1 ≡ 0 (mod 29), then all terms of the sequence are divisible by 29. Otherwise, we can assume a1 = 1 by
homogeneity. We now claim that

an =
∑
k<Fn

ck =
cFn − 1

c− 1
.

To prove this, we use strong induction on n. The base cases of n = 0 and n = 1 are easy. Now for the
inductive step, assume the result holds for all k ≤ n. Then by the inductive hypothesis,

an+1 ≡ an + an−1c
Fn ≡

∑
k<Fn

ck + cFn

∑
k<Fn−1

ck
(∗)
≡
∑
k<Fn

ck +
∑

Fn≤k<Fn+1

ck ≡
∑

k<Fn+1

ck (mod 29),

where in (∗) we crucially use the fact that every positive integer has a unique Zeckendorf representation.

We now split into cases.

• If c 6= 1 (mod 29), it suffices to have cFn ≡ 1 (mod 29). By taking c to be a primitive root mod 29
(c = 2, for instance), this is equivalent to 28 | Fn, implying n is divisible by lcm(6, 8) = 24.

• If c = 1, then the sum is congruent to Fn modulo 29, and so it suffices to find the smallest n for which
29 | Fn. This after some computation is 14.

Combining our two cases shows that the answer is lcm(14, 24) = 168 .

10. Determine the number of positive integers 2 ≤ n ≤ 50 such that all coefficients of the polynomial(
xϕ(n) − 1

)
−

∏
1≤k≤n

gcd(k,n)=1

(x− k)

are divisible by n.

Proposed by Manuel Fernandez

Answer: 19

Solution. The crucial claim is that if n 6= 4, then n is either prime or twice a Fermat prime.



Note that the result holds for n = 2, and n = 4, so assume n /∈ {2, 4}. First note that by looking at the
constant term of this polynomial, we must have∏

1≤k≤n
gcd(k,n)=1

k ≡ −1 (mod n),

where in particular we use the fact that ϕ(n) is even. By HMMT 2016 Algebra #8, this means n is either
pk, or 2pk for some odd prime p and some integer k ≥ 1; in particular, there must exist a primitive root
modulo n.

In the n = pk case, assume k ≥ 2. Then consider the power sums

S` :=
∑

1≤j≤n
gcd(j,n)=1

j`

modulo pk. Note that S` ≡ 0 (mod n) for 1 ≤ ` ≤ p − 2: if g is a generator of the multiplicative group
(Z/pkZ)∗, then

S` ≡
ϕ(pk)−1∑

j=0

g`j ≡ g`ϕ(pk) − 1

g` − 1
≡ 0 (mod pk).

However, Sp−1 is not zero; the following lemma is crucial to proving this claim.

Lemma 1. For all positive integers k,

pk∑
j=1

jp−1 ≡ (p− 1)pk−1 (mod pk).

Proof. The following proof of this lemma is based on alifenix-’s solution to USA December EGMO TST
2019 #3 on the Art of Problem Solving fora. We proceed by induction on k. For k = 1 the result follows by
Fermat’s Little Theorem. For the inductive step, write

pk+1∑
j=1

jp−1 =

p−1∑
i=0

pk∑
j=1

(ipk + j)p−1.

The crucial fact we need is that the inner sum is constant modulo pk (i.e. it doesn’t change as i changes).
Indeed,

pk∑
j=1

(ipk + j)p−1 ≡
pk∑
j=1

(
jp−1 + i(p− 1)pkjp−2

)
(mod pk);

the left sum is equal to pk−1(p − 1) by our IH, while the right term is zero due to the above primitive root
argument. Hence

pk+1∑
j=1

jp−1 ≡ p · pk−1(p− 1) ≡ pk(p− 1) (mod pk+1),

and so we are done.

As a result,

Sp−1 =

pk∑
j=1

jp−1 − pp−1
pk−1∑
j=1

jp−1 ≡ pp−1(p− 1) 6≡ 0 (mod pk),

where in the last step we use the IH on both terms and the fact that p− 1 ≥ 2. Thus the coefficient of xp−1 is
nonzero modulo pk, and so k > 1 gives a contradiction. We must have k = 1, and in that case the statement
is well-known to be true.



Now we proceed with the 2pk case. By Chinese Remainder Theorem, the congruence in the problem statement
must hold modulo 2. But in this case the product collapses to∏

1≤k≤n
gcd(k,n)=1

(x− k) ≡
∏

1≤k≤n
gcd(k,n)=1

(x− 1) ≡ (x− 1)ϕ(2pk) (mod 2).

Now write ϕ(2pk) = s · 2t where s is odd. Then

(x− 1)ϕ(2pk) ≡
[
(x− 1)2

t
]s
≡ (x2t − 1)s (mod 2).

This cannot equal xϕ(n) − 1 modulo 2 unless s = 1, i.e. pk−1(p− 1) has no odd factors. It follows that k = 1
and p − 1 = 2`, meaning that n is twice a Fermat prime. It remains to show that such a p works; but this
follows from the fact that n is even iff n + p is odd, and so modulo p this reduces to the previous case.

Finally, within the range [1, 50], there are 15 prime numbers and three integers which are twice a Fermat

prime (6, 10, and 34). Remembering to add the 4 back in, it follows that the desired count is 19 .


