CMIMD 2018

Team Solutions Packet

1-1. Let ABC be a triangle with BC = 30, AC = 50, and AB = 60. Circle wp is the circle passing through A and
B tangent to BC' at B; we is defined similarly. Suppose the tangent to ®(ABC) at A intersects wp and we
for the second time at X and Y respectively. Compute XY

Proposed by David Altizio

Solution. For simplicity, let BC' = a, AC = b, and AB = c. Note that angle chasing yields
LXAB =/LACB = ZLAYC and LYAC = LABC = LAX B,

so ABXA ~ ANABC ~ ACAY. This in particular implies

AY b AX ¢
— == and —_— =,
a c a b

and so

b
XY:AX+AY=a<C+‘;)=30(Z+§):.

1-2. Let T = TNYWR. For some positive integer k, a circle is drawn tangent to the coordinate axes such that
the lines v +y = k%, 2 +y = (k+1)2,..., 2 +y = (k+T)? all pass through it. What is the minimum possible
value of k7

Proposed by Patrick Lin

Solution. It suffices to consider the set of circles that contain a tangent line z 4+ y = k2 on the bottom-
left of the circle. For a fixed k, consider the corresponding circle of radius r; we see that %2 = (V2 - 1)r.
The maximum K such that the line x +y = K? passes through the circle is the maximal solution to KTQ <
(V2+1)r < K < (v2+ 1)k. Hence a total of |kv/2] + 1 lines pass through this circle. Returning to
the original problem, it’s clear that we then need k& > % in order to pass through 7"+ 1 lines; substituting

T = 61 (and approximating v/2 ~ 1.4) yields an answer of .
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2-1.

3-1.

3-2.

Suppose that a and b are non-negative integers satisfying a + b + ab + a® = 42. Find the sum of all possible
values of a + b.

Solution. We first case on a: if @ = 0 then we immediately get b = 42, and if a = 1 then b = 20. If a = 2,
then we have 3b+2° = 42, which can’t be satisfied since 2° cannot be a multiple of 3. Hence, for all remaining
solutions, a > 3, and so b < 3, else a® > 42. Trying the remaining values of b give (a,b) = (3,3), (5, 2), (41,0),
for an answer of 42+ 21+ 6+ 7+ 41 :.

. Let T = TNYWR. Suppose that a sequence {a,} is defined via a; = 11,a2 =T, and a,, = ap—1 + 2a,,_o for

n > 3. Find a9 + agg.
Proposed by Keerthana Gurushankar
Solution. Note that

an +an_1=an_1+2an_9+a,_1 =2(an_1+a,2)=--=2""2(az +ay).

Substituting n = 20 gives asg + a19 = 2'8(11 + T'), and substituting 7' = 117 yields an answer of .

Let X and Y be points on semicircle AB with diameter 3. Suppose the distance from X to AB is % and the
distance from Y to AB is i. Compute

(AX + BX)? — (AY + BY)2.

Proposed by David Altizio

Solution. Note AX? + BX? = AY? + BY? = 9 and further that AX - BX = 3. g by different area
calculations. The desired quantity then reduces to

2(AX-BX—AY-BY):2(3~Z—3~i> —[6]

Let T=TNYWR. T people each put a distinct marble into a bag; its contents are mixed randomly and one
marble is distributed back to each person. Given that at least one person got their own marble back, what is
the probability that everyone else also received their own marble?

Proposed by Patrick Lin

Solution. Let A be the event that everybody gets their marble back, and B be the event that at least one
person gets their marble back. Then Bayes suggests that

Pr[B | A] - Pr[A]

PrA | Bl = =

Clearly, Pr[B | A] = 1 and Pr[A] = ;. Finally, Pr[B] = 1— 2, where In equals the number of derangements on

the set [n]. Using either the recurrence In = n-!(n—1)4(—1)" or the recurrence In = (n—1)(!(n—1)+!(n—2))

1
455 |

or the identity 'n = L%’J, we find |7 = 265, and hence the answer i+ =

. Define an integer n > 0 to be two-far if there exist integers a and b such that a, b, and n+ a+ b are all powers

of two. If N is the number of two-far integers less than 2048, find the remainder when N is divided by 100.
Proposed by Patrick Lin
Solution. Write a = 2%, b = 2Y, and n + a + b = 2% for some z,y, z € N. Then the condition rearranges to

n=2"-2%-2Y
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4-2.

5-1.

Note that n = 0 trivially works, so assume n > 0. We now claim that if n can be written in this form, then
it can be written in such a form where x, y, and z are pairwise distinct. In particular, if not all of z, y, and
z are pairwise distinct, then z =y < z — 1 (else n is nonpositive), and so

22 _ 2:( _ 2y — 2Z _ 2.7)+1 — 2Z+1 _ 22 _ 2$+1.

Now we claim that there exists a unique representation of n in this form when x,y, z are all pairwise distinct
up to permutation of z and y. To prove this, write

no=2% — 270 _ QU0 — 9% _9T1 _ Ul % 4 %1 4 9V — 9% 4 270 4 9¥0,

Since binary representations of numbers are unique (due to x;,y;, z; all being distinct), it must be the case
that {xo, 0,20} = {x1,y1,21}. But z9 and z; are the largest numbers in their respective sets, so zo = z; and
{zo,y0} = {x1,y1} as desired.

It now suffices to count the number of triples (z,y, z) which give a positive n < 2048, where WLOG assume
x > y for simplicity. Note that if z < 11, then in fact any triple of integers works, and so the answer in this
case is just (132) = 220. If z = 12, then it must be the case that y = 11, or else n is too large; there are thus
11 cases here, corresponding to x € {0,...,10}. Finally, if z > 12, then it is easy to see that n is always too
large, so no cases exist. Adding back the 1 to deal with n = 0 gives a final answer of 220 4+ 11 + 1 = 232; the
last two digits of this are .

Let T'=TNYWR. Let CMU be a triangle with CM = 13, MU = 14, and UC = 15. Rectangle WEAN
is inscribed in ACMU with points W and E on MU, point A on CU, and point N on CM. If the area of
WEAN is T, what is the largest possible value for its perimeter?

Proposed by David Altizio

Solution. Let WE = AN = {. Now pick U’ € MU such that NU' || CU. Then ANMU’ ~ ACMU, and
in particular
MU' = MW +WU' = MW + EU = 14 — L.

Thus NW = 2(14 — ¢) = 12 — &/, and so
6
T—NW~WE—£(127€).

L e . s 12 g 35
Plugging in T' = 32 and solving the quadratic for £ yields £ =7+ /=,

for the perimeter of WEAN is

and so the maximum possible value

6 2 440
24 12—=0) | =24+ -4 =|2 — |
o (12 20) | =2 2o =204 Y

How many ordered triples (a, b, ¢) of integers satisfy the inequality

A+ +P<a+btc+2?

Proposed by David Altizio
Solution. The condition is equivalent to
(26 —1)* + (26— 1)® + (2¢ — 1)* < 11.
Now note that if |2a — 1| = 3, then the only way we can satisfy the inequality is if |26 — 1| = |2¢—1| = 1. Thus

it must be the case that at least two of a, b, ¢ are equal to either 0 or 1, and the third can either be equal to
0, 1,2, or —1. A quick count gives 23 4+ 323 = solutions.
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5-2.

6-1.

6-2.

7-1.

Let T = TNYWR. David rolls a standard T-sided die repeatedly until he first rolls T', writing his rolls in
order on a chalkboard. What is the probability that he is able to erase some of the numbers he’s written such
that all that’s left on the board are the numbers 1,2,...,7T in order?

Proposed by Patrick Lin

Solution. Let py be the probability that, given a die which rolls outcomes from the set {k,k+1,...,T},
David is able to obtain the sequence k,k + 1,...,T. Clearly pr =1 and pyr_; = % Note that in general we
have p,, = %karh since we must roll k before rolling T, and after that the event corresponds precisely to that

1 1
of pgt1. Hence, p1 = 57 =| 557 |

Jan rolls a fair six-sided die and calls the result r. Then, he picks real numbers a and b between 0 and 1

uniformly at random and independently. If the probability that the polynomial f(x) = IT—Z —xy/a+ b has a

real root can be expressed as simplified fraction 23, find p.

Proposed by Patrick Lin

Solution. Observe that f has a real root if and only if the discriminant is non-negative, which rearranges
to the condition 7 - a > 4b. Casing on the value of r, we obtain that the probability is

1 1+2+3+4+6+8 151
6\8 8 8 8 10 12/ 360’

and so the desired answer is .

Let T = TNYWR. Compute the number of ordered triples (a, b, ¢) such that a, b, and ¢ are distinct positive
integers and a +b+c=T.

Proposed by Patrick Lin

Solution. Assume that a < b < ¢; then we may reparametrize b = a + x and ¢ = a 4+« + y for z,y > 0,
and the desired condition becomes 3a + 2x + y = T. For every choice of a and z such that 3a 4+ 2z < T we
have exactly one solution, and so this gives an answer of

Substituting 7" = 151 we find that the sum is equal to 734+ 72+ 70+ 69 + --- + 3 + 1 = 1825. Finally,
multiplying by six to account for our original assumption yields | 10950 |

OR

Solution. Note that by Stars and Bars the number of solutions without the distinct condition is (120) =
11175. To compute the number of solutions with some of a, b, c equal to each other, note that a = b = c is
not possible since 3 1 151, so it suffices to compute the number of solutions to 2a + b = 151 and multiply by
3. Here, all b odd between 1 and 149 generate a solution, for 75 possible pairs. Thus the requested answer is

11175 — 3 - 75 = 10950 .

Let ABCD be a unit square, and suppose that E and F are on AD and AB such that AE = AF = 2. Let
CE and DF intersect at G. If the area of ACFG can be expressed as simplified fraction 23, find p + q.

Proposed by Patrick Lin

Solution. The most straightforward solution is simply to use coordinates. We have C' = (1,0), F = (3, 1),
and can compute G to be (&, +2) by intersecting lines « + 3y = 1 and 3z = 2y. Using the shoelace theorem

yields an area of %, so the answer is .
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7-2.

8-1.

9-1.

Let T = TNYWR. A total of 2T students go on a road trip. They take two cars, each of which seats T
people. Call two students friendly if they sat together in the same car going to the trip and in the same car
going back home. What is the smallest possible number of friendly pairs of students on the trip?

Proposed by Cody Johnson

Solution. Number the cars C; and Cs. Denote by n the number of students who sat in car C; during both
trips. Then T — n students sat in car C7 the first trip and car C5 the second trip. This means that there
must have been T'— n students starting in car C but then moving on to C, which finally implies there are
n students who stayed put in car Cy during both trips. The number of friendly pairs is thus

2(Z>+2<T;"> —n(n—1)+ (T —n)(T—n—1)=2n2—2nT + T2 — T}

plugging in T = 15 implies this simplifies to 2n? — 30n + 210. Now this is a quadratic in n and so it is

maximized by taking n near the vertex of the parabola, which occurs at n = 32, Thus the minimum is taken

2
from either n = 7 or n = 8 and has value .

Let AABC be a triangle with AB = 3 and AC' = 5. Select points D, E, and F o@ in that order such
that AD | BC, ZBAE = LCAE, and BF = CF. If E is the midpoint of segment DF, what is BC??

Proposed by Fei Peng

Solution. First, by the Angle Bisector Theorem, set BE = 3k and CE = 5k for some constant k so that
BF = CF = 4k; by the condition, we derive that BD = 2k and C'D = 6k. Now let BC = a such that by the
Law of Cosines,

BD 3cosB 3 “HEZC 216 1
CD  5cosC 5 %_M—FM_B

from which we derive a? = .

. Let T =TNYWR, and let T = 10X + Y for an integer X and a digit Y. Suppose that a and b are real

numbers satisfying a + ; =Y and £ = X. Compute (ab)* + (ai)4.
Proposed by Cody Johnson

Solution. From the previous solution, we see that X = 3 and Y = 2. Note that 6 = XY = %(a—i—%) = b—i—%.
This means that

1 1 1 1
12=(a+-)(b+-)=ab+24+— = ab+ — =10
b a ab ab

Now squaring this yields

1)? 1
100:<ab+> =(ab)? +24+ —— = (ab)*+ = 98,

1
ab (ab)? (ab)?

and performing this operation one last time yields (ab)* + (ai)4 =982 — 2 =9602 |.

Andy rolls a fair 4-sided dice, numbered 1 to 4, until he rolls a number that is less than his last roll. If the
expected number of times that Andy will roll the dice can be expressed as a reduced fraction %, find p + q.

Proposed by Eric Chen

Solution. Let E}), be the expected number of additional times Andy will roll the dice given that his last roll
was k. Then we have the recursive relations E4 = 1 + iE4, Es=1+ %(Eg +Ey), By =14 Y(Ey + Es + Ey),
and Fh =1+ %(El + Ey + E3 + E4). We may solve this system to obtain Ey = %, Es = 36, By, = g—‘;, and
Ey = %6. His initial roll is as if he had last rolled 1, and so the desired answer is 256 + 81 = .
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9-2. Let T =TNYW R. The solutions in z to the equation

10-1.

10-2.

T\ 2
(er) =1
z

form the vertices of a quadrilateral in the complex plane. Compute the area of this quadrilateral.
Proposed by David Altizio
Solution. By multiplying through by 22, the equation rewrites as

(24+T)P =22 = (P—24+T)(2+2+T)=0.

Solving yields z = 1147 VQIM. Since T is an integer, the roots must be imaginary, and in particular the
quadrilateral they form is a rectangle. Its area is thus

() (- () - =[]

Find the smallest positive integer k such that 11...11 is divisible by 9999.
—_—
k 1’s

Proposed by Patrick Lin

Solution. We wish to find the smallest k such that 10’?% = 0 mod 9999. This may be rewritten into
11...11 =0 mod 9, 10* = 1 mod 11, and 10¥* = 1 mod 101. The first condition yields 9 | k, the second

k 1’s
gives 2 | k, and the third gives 4 | k. Taking the least common multiple yields .

OR

Solution. We wish to find the smallest k£ such that

11---11 10 — 1
= eZ.
9999 9(10% — 1)

Note that since 10* — 1 | 10¥ — 1, we must have 4 | k. Let k = 4k for some ko € Z. Then

10%0 —1 14 10* + - + 10*ko—D

9(10* — 1) 9

Now remark that the numerator is congruent to 1 +1+ -+ 1 = kg mod 9, so we need 9 | kg. Thus the
minimum k is 9-4 = .

Let T =TNYWR. Circles wy and ws intersect at P and ). The common external tangent ¢ to the two circles
closer to @ touches wy and wy at A and B respectively. Line AQ intersects wo at X while BQ intersects wq
again at Y. Let M and N denote the midpoints of AY and BX, also respectively. If AQ = /T, BQ =7,
and AB = 8§, then find the length of M N.

Proposed by David Altizio

Solution. Note that since PXAQ and PY BA are cyclic quadrilaterals, /PXQ = ZPAQ and ZPBQ =
/PYQ, so APXB ~ APAY. By considering the spiral similarity sending the former triangle to the latter,
we deduce that APXA ~ APBY. (This can also be shown via simple angle chasing.) Note that M and N
are corresponding points on these triangles, so APXM ~ APBN, which means that

rpx _prB_,  PX _PB
PM PN PM PN’
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Combining this with the fact that /X PB = /M PN yields that APXB ~ APMN.

Now note that APXM ~ NAQT as well, where T' = PQ N AB. To see this, construct C' such that AQBC

is a parallelogram (so that T is the intersection point of the two diagonals). Then ZAQC = ZPX A and
JACQ = ZCQB = ZPQX = ZPQX,

so APXA ~ AAQT. From the fact that T and M are both corresponding points in these two triangles, we

obtain the desired conclusion.

As a result, simple computation gives

PM AT AB3 83 128
MN=-— .XB="—.XB= = ==
PX AQ 2-AQ- QB 2-6-7 | 21

OR

Solution. Let R be the midpoint of AB. Then MR = %BY7 RN = %AX, and ZMRN = ZAQB since
lines MR, RN, BQ, and AQ form a parallelogram. We have

= AB? = % and AX = —ABQ = g

BY
BQ 7 AQ 37

so MR = % and RN = ?. Also,

—82+624+7° 1
cosZMRN = COSZAQB = W = Z

= (7)(5) () (5) ()

16\, , 16\°
_(21> (6*+7 —21)_<21> - 64,

Thus

so MN = 8.8 =| 28|




