
Team Solutions Packet
1-1. Let ABC be a triangle with BC = 30, AC = 50, and AB = 60. Circle ωB is the circle passing through A and

B tangent to BC at B; ωC is defined similarly. Suppose the tangent to �(ABC) at A intersects ωB and ωC

for the second time at X and Y respectively. Compute XY .

Proposed by David Altizio

Solution. For simplicity, let BC = a, AC = b, and AB = c. Note that angle chasing yields

∠XAB = ∠ACB = ∠AY C and ∠Y AC = ∠ABC = ∠AXB,

so 4BXA ∼ 4ABC ∼ 4CAY . This in particular implies

AY

a
=

b

c
and

AX

a
=

c

b
,

and so

XY = AX + AY = a

(
b

c
+

c

b

)
= 30

(
5

6
+

6

5

)
= 61 .

1-2. Let T = TNYWR. For some positive integer k, a circle is drawn tangent to the coordinate axes such that
the lines x+ y = k2, x+ y = (k + 1)2, . . . , x+ y = (k +T )2 all pass through it. What is the minimum possible
value of k?

Proposed by Patrick Lin

Solution. It suffices to consider the set of circles that contain a tangent line x + y = k2 on the bottom-

left of the circle. For a fixed k, consider the corresponding circle of radius r; we see that k2

2 = (
√

2 − 1)r.

The maximum K such that the line x + y = K2 passes through the circle is the maximal solution to K2

2 ≤
(
√

2 + 1)r ⇐⇒ K ≤ (
√

2 + 1)k. Hence a total of bk
√

2c + 1 lines pass through this circle. Returning to
the original problem, it’s clear that we then need k ≥ T√

2
in order to pass through T + 1 lines; substituting

T = 61 (and approximating
√

2 ≈ 1.4) yields an answer of 44 .



2-1. Suppose that a and b are non-negative integers satisfying a + b + ab + ab = 42. Find the sum of all possible
values of a + b.

Solution. We first case on a: if a = 0 then we immediately get b = 42, and if a = 1 then b = 20. If a = 2,
then we have 3b+2b = 42, which can’t be satisfied since 2b cannot be a multiple of 3. Hence, for all remaining
solutions, a ≥ 3, and so b ≤ 3, else ab > 42. Trying the remaining values of b give (a, b) = (3, 3), (5, 2), (41, 0),

for an answer of 42 + 21 + 6 + 7 + 41 = 117 .

2-2. Let T = TNYWR. Suppose that a sequence {an} is defined via a1 = 11, a2 = T , and an = an−1 + 2an−2 for
n ≥ 3. Find a19 + a20.

Proposed by Keerthana Gurushankar

Solution. Note that

an + an−1 = an−1 + 2an−2 + an−1 = 2(an−1 + an−2) = · · · = 2n−2(a2 + a1).

Substituting n = 20 gives a20 + a19 = 218(11 + T ), and substituting T = 117 yields an answer of 225 .

3-1. Let X and Y be points on semicircle AB with diameter 3. Suppose the distance from X to AB is 5
4 and the

distance from Y to AB is 1
4 . Compute

(AX + BX)2 − (AY + BY )2.

Proposed by David Altizio

Solution. Note AX2 + BX2 = AY 2 + BY 2 = 9 and further that AX · BX = 3 · 5
4 by different area

calculations. The desired quantity then reduces to

2 (AX ·BX −AY ·BY ) = 2

(
3 · 5

4
− 3 · 1

4

)
= 6 .

3-2. Let T = TNYWR. T people each put a distinct marble into a bag; its contents are mixed randomly and one
marble is distributed back to each person. Given that at least one person got their own marble back, what is
the probability that everyone else also received their own marble?

Proposed by Patrick Lin

Solution. Let A be the event that everybody gets their marble back, and B be the event that at least one
person gets their marble back. Then Bayes suggests that

Pr[A | B] =
Pr[B | A] · Pr[A]

Pr[B]
.

Clearly, Pr[B | A] = 1 and Pr[A] = 1
T ! . Finally, Pr[B] = 1− !n

n! , where !n equals the number of derangements on
the set [n]. Using either the recurrence !n = n·!(n−1)+(−1)n or the recurrence !n = (n−1)(!(n−1)+!(n−2))

or the identity !n = bn!e c, we find !T = 265, and hence the answer is 1
T !−!T = 1

455 .

4-1. Define an integer n ≥ 0 to be two-far if there exist integers a and b such that a, b, and n+a+ b are all powers
of two. If N is the number of two-far integers less than 2048, find the remainder when N is divided by 100.

Proposed by Patrick Lin

Solution. Write a = 2x, b = 2y, and n + a + b = 2z for some x, y, z ∈ N. Then the condition rearranges to

n = 2z − 2x − 2y.



Note that n = 0 trivially works, so assume n > 0. We now claim that if n can be written in this form, then
it can be written in such a form where x, y, and z are pairwise distinct. In particular, if not all of x, y, and
z are pairwise distinct, then x = y < z − 1 (else n is nonpositive), and so

2z − 2x − 2y = 2z − 2x+1 = 2z+1 − 2z − 2x+1.

Now we claim that there exists a unique representation of n in this form when x, y, z are all pairwise distinct
up to permutation of x and y. To prove this, write

n = 2z0 − 2x0 − 2y0 = 2z1 − 2x1 − 2y1 ⇒ 2z0 + 2x1 + 2y1 = 2z1 + 2x0 + 2y0 .

Since binary representations of numbers are unique (due to xi, yi, zi all being distinct), it must be the case
that {x0, y0, z0} = {x1, y1, z1}. But z0 and z1 are the largest numbers in their respective sets, so z0 = z1 and
{x0, y0} = {x1, y1} as desired.

It now suffices to count the number of triples (x, y, z) which give a positive n < 2048, where WLOG assume
x > y for simplicity. Note that if z ≤ 11, then in fact any triple of integers works, and so the answer in this
case is just

(
12
3

)
= 220. If z = 12, then it must be the case that y = 11, or else n is too large; there are thus

11 cases here, corresponding to x ∈ {0, . . . , 10}. Finally, if z > 12, then it is easy to see that n is always too
large, so no cases exist. Adding back the 1 to deal with n = 0 gives a final answer of 220 + 11 + 1 = 232; the
last two digits of this are 32 .

4-2. Let T = TNYWR. Let CMU be a triangle with CM = 13, MU = 14, and UC = 15. Rectangle WEAN
is inscribed in 4CMU with points W and E on MU , point A on CU , and point N on CM . If the area of
WEAN is T , what is the largest possible value for its perimeter?

Proposed by David Altizio

Solution. Let WE = AN = `. Now pick U ′ ∈MU such that NU ′ ‖ CU . Then 4NMU ′ ∼ 4CMU , and
in particular

MU ′ = MW + WU ′ = MW + EU = 14− `.

Thus NW = 12
14 (14− `) = 12− 6

7`, and so

T = NW ·WE = `

(
12− 6

7
`

)
.

Plugging in T = 32 and solving the quadratic for ` yields ` = 7 ±
√

35
3 , and so the maximum possible value

for the perimeter of WEAN is

2

[
` +

(
12− 6

7
`

)]
= 24 +

2

7
` = 26 +

√
440

21
.

5-1. How many ordered triples (a, b, c) of integers satisfy the inequality

a2 + b2 + c2 ≤ a + b + c + 2?

Proposed by David Altizio

Solution. The condition is equivalent to

(2a− 1)2 + (2b− 1)2 + (2c− 1)2 ≤ 11.

Now note that if |2a−1| = 3, then the only way we can satisfy the inequality is if |2b−1| = |2c−1| = 1. Thus
it must be the case that at least two of a, b, c are equal to either 0 or 1, and the third can either be equal to
0, 1, 2, or −1. A quick count gives 23 + 3 · 23 = 32 solutions.



5-2. Let T = TNYWR. David rolls a standard T -sided die repeatedly until he first rolls T , writing his rolls in
order on a chalkboard. What is the probability that he is able to erase some of the numbers he’s written such
that all that’s left on the board are the numbers 1, 2, . . . , T in order?

Proposed by Patrick Lin

Solution. Let pk be the probability that, given a die which rolls outcomes from the set {k, k + 1, . . . , T},
David is able to obtain the sequence k, k + 1, . . . , T . Clearly pT = 1 and pT−1 = 1

2 . Note that in general we
have pk = 1

2pk+1, since we must roll k before rolling T , and after that the event corresponds precisely to that

of pk+1. Hence, p1 = 1
2T

= 1
231 .

6-1. Jan rolls a fair six-sided die and calls the result r. Then, he picks real numbers a and b between 0 and 1

uniformly at random and independently. If the probability that the polynomial f(x) = x2

r − x
√
a + b has a

real root can be expressed as simplified fraction p
q , find p.

Proposed by Patrick Lin

Solution. Observe that f has a real root if and only if the discriminant is non-negative, which rearranges
to the condition r · a ≥ 4b. Casing on the value of r, we obtain that the probability is

1

6

(
1

8
+

2

8
+

3

8
+

4

8
+

6

10
+

8

12

)
=

151

360
,

and so the desired answer is 151 .

6-2. Let T = TNYWR. Compute the number of ordered triples (a, b, c) such that a, b, and c are distinct positive
integers and a + b + c = T .

Proposed by Patrick Lin

Solution. Assume that a < b < c; then we may reparametrize b = a + x and c = a + x + y for x, y > 0,
and the desired condition becomes 3a + 2x + y = T . For every choice of a and x such that 3a + 2x < T we
have exactly one solution, and so this gives an answer of

bT
3 c−1∑
a=1

bT−3a
2 c−1∑
x=1

1 =

bT
3 c−1∑
a=1

(⌊
T − 3a

2

⌋
− 1

)
.

Substituting T = 151 we find that the sum is equal to 73 + 72 + 70 + 69 + · · · + 3 + 1 = 1825. Finally,
multiplying by six to account for our original assumption yields 10950 .

OR

Solution. Note that by Stars and Bars the number of solutions without the distinct condition is
(
150
2

)
=

11175. To compute the number of solutions with some of a, b, c equal to each other, note that a = b = c is
not possible since 3 - 151, so it suffices to compute the number of solutions to 2a + b = 151 and multiply by
3. Here, all b odd between 1 and 149 generate a solution, for 75 possible pairs. Thus the requested answer is
11175− 3 · 75 = 10950 .

7-1. Let ABCD be a unit square, and suppose that E and F are on AD and AB such that AE = AF = 2
3 . Let

CE and DF intersect at G. If the area of 4CFG can be expressed as simplified fraction p
q , find p + q.

Proposed by Patrick Lin

Solution. The most straightforward solution is simply to use coordinates. We have C = (1, 0), F = ( 2
3 , 1),

and can compute G to be ( 2
11 ,

3
11 ) by intersecting lines x + 3y = 1 and 3x = 2y. Using the shoelace theorem

yields an area of 4
11 , so the answer is 15 .



7-2. Let T = TNYWR. A total of 2T students go on a road trip. They take two cars, each of which seats T
people. Call two students friendly if they sat together in the same car going to the trip and in the same car
going back home. What is the smallest possible number of friendly pairs of students on the trip?

Proposed by Cody Johnson

Solution. Number the cars C1 and C2. Denote by n the number of students who sat in car C1 during both
trips. Then T − n students sat in car C1 the first trip and car C2 the second trip. This means that there
must have been T − n students starting in car C2 but then moving on to C1, which finally implies there are
n students who stayed put in car C2 during both trips. The number of friendly pairs is thus

2

(
n

2

)
+ 2

(
T − n

2

)
= n(n− 1) + (T − n)(T − n− 1) = 2n2 − 2nT + T 2 − T ;

plugging in T = 15 implies this simplifies to 2n2 − 30n + 210. Now this is a quadratic in n and so it is
maximized by taking n near the vertex of the parabola, which occurs at n = 15

2 . Thus the minimum is taken

from either n = 7 or n = 8 and has value 98 .

8-1. Let 4ABC be a triangle with AB = 3 and AC = 5. Select points D,E, and F on BC in that order such
that AD ⊥ BC, ∠BAE = ∠CAE, and BF = CF . If E is the midpoint of segment DF , what is BC2?

Proposed by Fei Peng

Solution. First, by the Angle Bisector Theorem, set BE = 3k and CE = 5k for some constant k so that
BF = CF = 4k; by the condition, we derive that BD = 2k and CD = 6k. Now let BC = a such that by the
Law of Cosines,

BD

CD
=

3 cosB

5 cosC
=

3

5
·

a2+32−52
2·a·3

a2−32+52

2·a·5
=

a2 − 16

a2 + 16
=

1

3

from which we derive a2 = 32 .

8-2. Let T = TNYWR, and let T = 10X + Y for an integer X and a digit Y . Suppose that a and b are real
numbers satisfying a + 1

b = Y and b
a = X. Compute (ab)4 + 1

(ab)4 .

Proposed by Cody Johnson

Solution. From the previous solution, we see that X = 3 and Y = 2. Note that 6 = XY = b
a ·(a+ 1

b ) = b+ 1
a .

This means that

12 =

(
a +

1

b

)(
b +

1

a

)
= ab + 2 +

1

ab
⇒ ab +

1

ab
= 10.

Now squaring this yields

100 =

(
ab +

1

ab

)2

= (ab)2 + 2 +
1

(ab)2
⇒ (ab)2 +

1

(ab)2
= 98,

and performing this operation one last time yields (ab)4 + 1
(ab)4 = 982 − 2 = 9602 .

9-1. Andy rolls a fair 4-sided dice, numbered 1 to 4, until he rolls a number that is less than his last roll. If the
expected number of times that Andy will roll the dice can be expressed as a reduced fraction p

q , find p + q.

Proposed by Eric Chen

Solution. Let Ek be the expected number of additional times Andy will roll the dice given that his last roll
was k. Then we have the recursive relations E4 = 1 + 1

4E4, E3 = 1 + 1
4 (E3 +E4), E2 = 1 + 1

4 (E2 +E3 +E4),
and E1 = 1 + 1

4 (E1 + E2 + E3 + E4). We may solve this system to obtain E4 = 4
3 , E3 = 16

9 , E2 = 64
27 , and

E1 = 256
81 . His initial roll is as if he had last rolled 1, and so the desired answer is 256 + 81 = 337 .



9-2. Let T = TNYWR. The solutions in z to the equation(
z +

T

z

)2

= 1

form the vertices of a quadrilateral in the complex plane. Compute the area of this quadrilateral.

Proposed by David Altizio

Solution. By multiplying through by z2, the equation rewrites as

(z2 + T )2 = z2 ⇒ (z2 − z + T )(z2 + z + T ) = 0.

Solving yields z = ±1±
√
1−4T

2 . Since T is an integer, the roots must be imaginary, and in particular the
quadrilateral they form is a rectangle. Its area is thus(

1

2
−
(
−1

2

))(√
4T − 1

2
−
(
−
√

4T − 1

2

))
=
√

4T − 1 =
√

1347 .

10-1. Find the smallest positive integer k such that 11 . . . 11︸ ︷︷ ︸
k 1’s

is divisible by 9999.

Proposed by Patrick Lin

Solution. We wish to find the smallest k such that 10k−1
9 ≡ 0 mod 9999. This may be rewritten into

11 . . . 11︸ ︷︷ ︸
k 1’s

≡ 0 mod 9, 10k ≡ 1 mod 11, and 10k ≡ 1 mod 101. The first condition yields 9 | k, the second

gives 2 | k, and the third gives 4 | k. Taking the least common multiple yields 36 .

OR

Solution. We wish to find the smallest k such that

11 · · · 11

9999
=

10k − 1

9(104 − 1)
∈ Z.

Note that since 104 − 1 | 10k − 1, we must have 4 | k. Let k = 4k0 for some k0 ∈ Z. Then

104k0 − 1

9(104 − 1)
=

1 + 104 + · · ·+ 104(k0−1)

9
.

Now remark that the numerator is congruent to 1 + 1 + · · · + 1 ≡ k0 mod 9, so we need 9 | k0. Thus the

minimum k is 9 · 4 = 36 .

10-2. Let T = TNYWR. Circles ω1 and ω2 intersect at P and Q. The common external tangent ` to the two circles
closer to Q touches ω1 and ω2 at A and B respectively. Line AQ intersects ω2 at X while BQ intersects ω1

again at Y . Let M and N denote the midpoints of AY and BX, also respectively. If AQ =
√
T , BQ = 7,

and AB = 8, then find the length of MN .

Proposed by David Altizio

Solution. Note that since PXAQ and PY BA are cyclic quadrilaterals, ∠PXQ = ∠PAQ and ∠PBQ =
∠PY Q, so 4PXB ∼ 4PAY . By considering the spiral similarity sending the former triangle to the latter,
we deduce that 4PXA ∼ 4PBY . (This can also be shown via simple angle chasing.) Note that M and N
are corresponding points on these triangles, so 4PXM ∼ 4PBN , which means that

PX

PM
=

PB

PN
=⇒ PX

PM
=

PB

PN
.



Combining this with the fact that ∠XPB = ∠MPN yields that 4PXB ∼ 4PMN .

Now note that 4PXM ∼ 4AQT as well, where T = PQ ∩ AB. To see this, construct C such that AQBC
is a parallelogram (so that T is the intersection point of the two diagonals). Then ∠AQC = ∠PXA and

∠ACQ = ∠CQB = ∠PQX = ∠PQX,

so 4PXA ∼ 4AQT . From the fact that T and M are both corresponding points in these two triangles, we
obtain the desired conclusion.

As a result, simple computation gives

MN =
PM

PX
·XB =

AT

AQ
·XB =

AB3

2 ·AQ ·QB
=

83

2 · 6 · 7
=

128

21
.

OR

Solution. Let R be the midpoint of AB. Then MR = 1
2BY , RN = 1

2AX, and ∠MRN = ∠AQB since
lines MR, RN , BQ, and AQ form a parallelogram. We have

BY =
AB2

BQ
=

64

7
and AX =

AB2

AQ
=

32

3
,

so MR = 32
7 and RN = 16

3 . Also,

cos∠MRN = cos∠AQB =
−82 + 62 + 72

2 · 6 · 7
=

1

4
.

Thus

MN2 =

(
32

7

)2

+

(
16

3

)2

− 2

(
32

7

)(
16

3

)(
1

4

)
=

(
16

21

)2 (
62 + 72 − 21

)
=

(
16

21

)2

· 64,

so MN = 16
21 · 8 = 128

21 .


