CHIMD 2018

Power Round

INSTRUCTIONS

1. Do not look at the test before the proctor starts the round.

2. This test consists of several problems, some of which are short-answer and some of which
require proofs, to be solved within a time frame of 60 minutes. There are 63 points total.

3. Answers should be written and clearly labeled on sheets of blank paper. Each numbered
problem should be on its own sheet. If you have multiple pages, number them as well (e.g.

1/3,2/3).

4. Write your team ID on the upper-right corner and the problem and page number of the
problem whose solution you are writing on the upper-left corner on each page you submit.
Papers missing these will not be graded. Problems with more than one submission will not

be graded.
5. Write legibly. Illegible handwriting will not be graded.

6. In your solution for any given problem, you may assume the results of previous problems,
even if you have not solved them. You may not do the same for later problems.

7. Problems are not ordered by difficulty. They are ordered by progression of content.
8. No computational aids other than pencil/pen are permitted.

9. If you believe that the test contains an error, submit your protest in writing to the registration
desk on the first floor of the University Center by the end of lunch.
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This Power Round will examine a variant of the classic Concentration game.

Problems
1.1 Problem (3 points) . . . . . . . . L 3
1.2 Problem (2 points) . . . . . . . .o 3
2.1 Problem (4 points) . . . . . ..o 4
2.2 Problem (6 points) . . . . . . . . 4
3.1 Problem (4 points) . . . . . . .. 5
3.2 Problem (3 points) . . . . . . .. 5
4.1 Problem (8 points) . . . . . . . . 5
4.2 Problem (8 points) . . . . . . ... 5
5.1 Problem (6 points) . . . . . . . . 6
5.2 Problem (6 points) . . . . . . . . 6
5.3 Problem (8 points) . . . . . . . . 6
6.1 Problem (5 points) . . . . . . .. 6

1 Permutations
Let A ={aj,as,...,a,} be a set of size n.

e A permutation of A is a bijection o : A — A. In other words, a permutation is a way of rearranging the order
of the elements in a set, so if you list out the elements of A in some order

al) a‘27 ct Gnp

you rearrange them to get
olar), o(az), ..., o(an)

e We can multiply two permutations 01,09 in the way we compose functions, i.e., o109 is the permutation
sending a; to o1(02(a;)). Intutively, this is equivalent to first rearranging the elements of A according to o
and then according to oy.

e The product of two permutations is still a permutation.
e We denote o” to be oo ..., where o is multiplied with itself k times.

e Let S4 denote the set of all permutations of the set A. We will use the abuse of notation S,, to denote the
set of permutations of the set {1,2,...,n}, i.e., S, = S12,.. n}-

e We can represent a permutation in the following way:

12345es
31 5 4 2 5

which corresponds to the permutation sending 1 to 3, 2 to 1, 3 to 5, etc.

e We call a permutation o € S,, a k-cycle or a cycle of length k if there are distinct integers a1, aq, ..., ax such
that
ola1) =as, ofa2)=as, ..., olag)=as
and o(i) = 4 for all i & {ay,as,...,ar}. In this case, we denote the permutation by (a1,as,...,a). For

example, we now have two different notations for the permutation

123 45
(1’5’2)_<5 13 4 2)
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e Two cycles are called disjoint if none of their elements are the same. For example, (1,2,3) and (4,5,6) are
disjoint, but (1,2, 3) and (3,4, 5) are not since they share 3.

e Every permutation can be written as the product of disjoint cycles. This representation is unique, up to
rearranging the order in which we write them. One “proof by picture” of this fact is that you can always draw

a diagram similar to this:
1
36D
R T
4 7

This picture illustrates the cycle decomposition of

1 2 3 4 5 6 7

Above, writing adjacent cycles indicates multiplication of cycles (which is the same as composition).

Problem 1.1 (3 points)
The following parts are each worth 1 point.

(a) Give an expression for |S,|, the number of elements in S,,, in terms of n.

(b) Let 0,7 € Sg be the permutations o = (3,1,4,2) and 7 = (1,2,6,5). Compute o7 and write it as a product
of disjoint cycles.

(c) Let o and 7 be as above. Compute (o7)2018,

(a) n!
(b) (3,1)(6,5,4,2)

(c) (4,6)(2,5)

Problem 1.2 (2 points)

Prove the last bullet point: every permutation can be written as the product of disjoint cycles.

Fix n € N, and let € [n] be arbitrary. Consider the numbers z,0(x),0%(z),...,0"(x). By Pigeonhole

there exist i < j such that o?(z) = 07 (z), and since o is a bijection, 0/ ~%(z) = x. Now write
o= (z,0(x),...,077""z))o’

where o’ is the restriction of o to the remaining elements of [n]. Finish by an inductive argument.
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2 Concentration

There is a classical memory game called concentration that you can play with a deck of cards. Let N be a positive
integer, and suppose that you have a deck of 2N cards labeled 1, 1, 2, 2, ..., N, N. (Cards with the same value
are indistinguishable.)

You start by shuffling the deck of cards and lay them face-down on a table in front of you. At each turn, you
pick two face-down cards and flip them face-up.

e If they do not match, you flip them back over.
e If the cards match, then those cards remain face-up for the rest of the game.

The game ends when all the cards are face-up.
Throughout the entire game, we will assume you have a perfect memory.

Problem 2.1 (4 points)

Normal concentration isn’t that fun if you play it with a perfect memory. Find a strategy that is guaranteed
to finish the game in at most 2N moves.

On turn ¢ for 1 < ¢t < N, flip over cards {2t — 1,2t}. After this, we know exactly where every card is.
Therefore, in the next IV turns, we can simply flip over pairs of matching cards because we know where they
are.

Problem 2.2 (6 points)

Consider the following strategy: each turn you choose a pair of cards uniformly at random from the set of
pairs of face-down cards, until all cards are turned face-up. (That is, each turn you play perfectly randomly.)
What is the expected number of turns this strategy will take?

This strategy takes an expected N2 steps. When N = 1, it obviously takes 1 step. When N > 1, the waiting

time until we see a matching pair has a geometric distribution with parameter % = qu Therefore,

2

in expectation, we take (qu) = 2N — 1 steps and commence the exact same strategy for N — 1. By

linearity of expectation, the answer is just

3 Crazy Concentration

Consider a variant of this game called crazy concentration. This game is like concentration, except that in addition
to the shuffled cards, a permutation ¢ € Son is fixed, but hidden from the player. This is called the mystery
permutation. Then the following modification is made:

At the end of each turn, the player closes their eyes and the cards are rearranged according to the
permutation ¢, meaning the card in the i*"" position from the left is placed in the o(7)*® position instead.

Note that cards that are flipped face-up remain face-up even during the rearrangement. The diagram below shows
an excerpt of a game with 2N = 6, after which two cards have already been matched. The mystery permutation is

given by
(1 2 3 45 6
77\1 3 4 2 6 5/)°
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Problem 3.1 (4 points)

Show that if the mystery permutation is told to you, then you can guarantee finishing the game in at most 2V
moves.

On turn ¢ for 1 < ¢ < N, flip over cards {o%(2t — 1),0%(2t)}. Each time we do this, we discover what cards
were originally located in positions {2t — 1,2t}. Therefore, after doing this, we know exactly how the deck
was originally shuffled. Thus, on the tth turn for N +1 < ¢ < 2N, we find a new matching pair 4, j in the
original shuffling of the deck and flip them over by choosing cards {c*(i), 0! (j)}.

Problem 3.2 (3 points)
Find a strategy which is guaranteed to finish crazy concentration in at most (2N) - (2N)! turns.

We know that after (2/V)! applications of o, all the cards return to their original position. Therefore, we can
just play our normal concentration strategy on turns that are divisible by (2N)!, and play arbitrarily on any
other turn.

4 Extreme Concentration

Extreme concentration is like crazy concentration (with the mystery permutation o shuffling the cards after each
turn), with two changes:

e The deck is labeled {1,...,2N} instead of having two copies each of {1,..., N}. Thus, cards can never be
matched to each other, and are always turned face down again after being flipped.
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e The win condition is changed to the following: the player wins if on any turn they can deduce with 100%
certainty the positions of each of the 2V cards.

At first glance, extreme concentration seems like it is even harder than crazy concentration. However, it turns out
it is in some sense easier: it can be won in just 2N moves with perfect memory!

Here is the strategy for extreme concentration. Let ¢ = 1 and j = 2N at the beginning of the algorithm. Then
repeat the following steps:

1. Flip the cards at position 4 and j.

e If we have seen the card at position ¢ at any point in the past, then we increment ¢ by one. (Otherwise,
we do not change i.)

e If we have seen the card at position j at any point before, then we decrement j by one. (Otherwise, we
do not change j.)

2. Terminate the algorithm if ¢ > j.

Problem 4.1 (8 points)

Show that the algorithm terminates in exactly 2N turns.

If the algorithm takes T turns, it makes 27T flips (where if ¢ = j we consider that card to be flipped twice).
So it’s equivalent to show there are at most 4N flips.
Each flip can be categorized into two categories:

e A cached flip, where we have seen the card before (and change i or j).
e A new flip, where we flip a card that we have never seen before (and thus don’t change i or j).

There are exactly 2N of the first type (exactly one per index) and exactly 2NNV of the latter type (exactly
one per card), plus possibly an addition flip due to a contribution if i = j.

Thus the algorithm takes at most 4N + 1 flips, but since the number of flips is even, it takes at most 4/V.
(Note that this actually implies that the ¢ = j case never appears in the algorithm.)

Problem 4.2 (8 points)

Show that the observations from this algorithm are sufficient to win the game.

Since the cards are all distinct, we can think of o as a permutation on the cards, rather than just on the
positions. Indeed, there exists a permutation 7 on the cards such that application of ¢ on the indices is the
same as applying 7 on each card (and not moving it).

Let X and Y be cards such that X = 7(Y"). Then in this algorithm, we will always encounter a point where
we flip a position, observe card X for the first time, and then see card Y immediately after it. In this way
we know the entire permutation 7.

Moreover, on the (¢t 4+ 1)st turn, if we flip the card at position ¢ and see a card Z, then we know at the
beginning the card was originally 7—¢(Z). Thus at the end of the algorithm we know exactly where all cards
are.

5 Face-Up Cards

Now back to normal crazy concentration. Suppose at the start of the game, we flip the cards in positions ¢ and j
and find that they match! These cards thus remain face-up for the rest of the game (and we observe their movement
under the mystery permutation o). Let’s see how much information we can get out of this.
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For the problems in this section, suppose that the indices ¢ and j are part of cycles C; and C; in o, which have
lengths ¢; and c¢;, respectively, that we are trying to figure out. (To determine C; means to figure out the indices
in Cy; equivalently, to compute o™ (i) for any integer n.)

Problem 5.1 (6 points)

Find a strategy which guarantees at least one of the following two things:
e the strategy proves that ¢; = ¢;, or

o the strategy proves that ¢; # ¢;, determines the value of min{c;, ¢;}, and determines which of ¢; and ¢;
is smaller.

signal argument. TODO. (Cody’s original does not work.)

Problem 5.2 (6 points)

Assume that ¢; # ¢; (but the player does not know this in advance).
(a) Show that after 2 - min{c;,¢;} — 1 turns, we can determine either of C; or Cj.

(b) Show that after max{2 - min{c;,¢;} —1,¢;,¢;} turns, we can completely figure out both of C; and Cj.

The signal argument succeeds in at most this time, and by this time, we can read the repeats in the shorter
cycle.

Problem 5.3 (8 points)

Assume that ¢; = ¢; now (but the player does not know this in advance). Find a strategy which guarantees at
least one of the following two things, in at most 3¢; turns:

e the strategy determines both cycles C; and C; completely (which may even be the same cycle), or

e all 2¢; cards are matched (and thus remain face up thereafter).

The player realizes ¢; = ¢; in at most ¢; steps. Again, suppose our cards follow the trajectory {zo, yo} = {¢,5},
{z1,11}, -+, {Ze; Ye; } = {4, 7} On the first turn, flip over cards {7, j}, and first assume they do not match.
Then on turn ¢ for 2 < t < ¢;, flip over cards {z;—1,y:—1}. We know that they will not match and thus
tracking their trajectories, we will be able to determine what the entire cycle is. If they do match, then we
essentially restart the strategy. That is, flip over {i,j} again: if they don’t match, then for 3 <t < ¢;, flip
over cards {z;_2,ys—o2}. If they do match, then repeat again.

6 Your Turn

Problem 6.1 (5 points)

What other observations or strategies could speed up the number of turns it takes to solve crazy concentration?
Describe as many as you can come up with, and for each observation briefly discuss how it might lead to a
better strategy.




