
Number Theory Solutions Packet
1. Suppose a, b, and c are relatively prime integers such that

a

b+ c
= 2 and

b

a+ c
= 3.

What is the value of |c|?

Proposed by David Altizio

Solution. The given equations rewrite to 2c = a− 2b and 3c = b− 3a, which implies

3(a− 2b) = 2(b− 3a) ⇒ 9a = 8b.

Hence a = ±8 and b = ±9. Now back-substitution yields c = ±5, giving an answer of 5 .

2. Find all integers n for which (n− 1) · 2n + 1 is a perfect square.

Proposed by Cody Johnson

Solution. First note that if n ≤ 0, then (n − 1)2n is an integer precisely when n ≥ −1; checking yields
n = 0 and n = −1 as solutions. Now assume n > 0. We need to solve

x2 = (n− 1) · 2n + 1

or
(x− 1)(x+ 1) = (n− 1) · 2n.

Note that gcd(x − 1, x + 1) ≤ 2, so 2n−1 completely divides one either x − 1 or x + 1. Supposing that
2n−1 | x− 1, we have

2 = (x+ 1)− (x− 1) ≤ 2(n− 1)− 2n−1,

since x− 1 ≥ 2n−1, and so x+ 1 ≤ 2(n− 1). For n > 4, this is impossible because 2(n− 1)− 2n−1 < 0. On
the other hand, if 2n−1 | x+ 1, then we have

2 = (x+ 1)− (x− 1) ≥ 2n−1 − 2(n− 1) > 2

for all n > 4. In either case, n > 4 is impossible, so we only need to test n ≤ 4. We get n = −1, 0, 1, 4 are

the answers.

3. Let S be the set of natural numbers that cannot be written as the sum of three squares. Legendre’s three-
square theorem states that S = {4a · (8b + 7) | a, b ≥ 0}. Find the smallest n ∈ N such that n and n + 1 are
both in S.

Proposed by Cody Johnson

Solution. If n is even, then 4 | n, so n+ 1 ≡ 1 (mod 4) which is not 7 (mod 8), so it is not in S. Thus, n

is odd, so 8 | n+ 1, so 16 | n+ 1, so n+ 1 ≥ 16 · (8 · 0 + 7) = 112. Thus, n ≥ 111 , which we can easily verify
works since n = 40 · (8 · 13 + 7) ∈ S and n+ 1 = 42 · (8 · 0 + 7) ∈ S.

4. Let a > 1 be a positive integer. The sequence of natural numbers {an} is defined as follows: a1 = a and for
all n ≥ 1, an+1 is the largest prime factor of a2

n − 1. Determine the smallest possible value of a such that the
numbers a1, a2, . . . , a7 are all distinct.

Proposed by David Altizio

Solution. First remark that if a = 2, then the sequence repeats 2 7→ 3 7→ 2 7→ · · · , so in order to minimize
a7 it must be the case that a7 = 2 and a6 ≥ 3. (Note that the other way around is not possible, since for no
integer a ≥ 4 is a2 − 1 a power of 2.) Now examine a2, noting that it is prime. Then a3 must satisfy

a3 | a2
2 − 1 = (a2 − 1)(a2 + 1).



Since a2 is an odd prime, a2 − 1 and a2 + 1 are both even, and so a3 ≤ a2+1
2 . Thus

a2 ≥ 2a3 − 1 ≥ 4a4 − 3 ≥ · · · ≥ 16a6 − 15 ≥ 33,

where here we use the fact that a6 ≥ 3. Trying a few primes past 33 shows that in fact

47 7→ 23 7→ 11 7→ 5 7→ 3 7→ 2

gives a valid sequence a2, . . . , a7 of distinct integers. Hence the smallest possible value of a2 is 47, meaning
the smallest possible value of a1 is 46 .

5. It is given that there exist unique integers m1, . . . ,m100 such that

0 ≤ m1 < m2 < · · · < m100 and 2018 =

(
m1

1

)
+

(
m2

2

)
+ · · ·+

(
m100

100

)
.

Find m1 +m2 + · · ·+m100.

Proposed by David Altizio

Solution. Say the sequence jumps at i if mi+1−mi > 1. If m100 ≥ 102, then
(
m100

100

)
≥
(

102
100

)
= 5151 > 2018.

Thus, the sequence jumps at most twice, i.e., for some 1 ≤ a ≤ b ≤ 100, we have mi = i− 1 for all 1 ≤ i ≤ a,
mi = i for all a < i ≤ b, and mi = i+ 1 for all b < i ≤ 100. Hence, we have

2018 =

a∑
i=1

(
i− 1

i

)
+

b∑
i=a+1

(
i

i

)
+

100∑
i=b+1

(
i+ 1

i

)
= b− a+

101(102)

2
− (b+ 1)(b+ 2)

2
,

so

3132 =
b2 + b

2
+ a.

Trying some values of b near
√

2 · 3132 ≈
√

6400 = 80, we find that b = 78, a = 51 works. Thus, the answer is

51∑
i=1

(i− 1) +

78∑
i=52

i+

100∑
i=79

(i+ 1) =
100(101)

2
− 51 + 22 = 5021 .

Remark. This is called the 100-nomial representation of 2018. In general, for any positive integers m and n,
one can show that the m-nomial representation of n is unique.

6. Let φ(n) denote the number of positive integers less than or equal to n that are coprime to n. Find the sum
of all 1 < n < 100 such that φ(n)|n.

Proposed by Andrew Kwon

Solution. We claim that for n > 1, φ(n)|n ⇐⇒ n = 2a3b, where a ≥ 1 and b ≥ 0. Evidently n must be
even. Let n = 2am, where m is odd. If m has more than 2 prime distinct prime factors, then ϕ(m) will be
divisible by 4. However, then 2a+1|2a−1ϕ(m) = ϕ(n)|n, which is a contradiction. Therefore, m = pb for some
prime p and nonnegative integer b. Then, p− 1|ϕ(n)|n, and so p− 1 must be a power of 2. Upon analogous
considerations as before to the largest power of 2 that can divide ϕ(n), we find that p− 1 is necessarily equal
to 2, and so p = 3.

We thus must find the sum of all integers of the form 2a3b < 100, where a ≥ 1 and b ≥ 0, and casing on the
value of b we can calculate this with geometric series to be 492 .

7. For each q ∈ Q, let π(q) denote the period of the repeating base-16 expansion of q, with the convention of
π(q) = 0 if q has a terminating base-16 expansion. Find the maximum value among

π

(
1

1

)
, π

(
1

2

)
, . . . , π

(
1

70

)
.



Proposed by Cody Johnson

Solution. Suppose 1
n has a repeating base-16 expansion with period π. If we multiply 1

n by a large enough

power of 16 (say 16N ), then the fractional part will look like 0.b1 . . . bπ. If we then multiply this by just 16π

and take the difference, we will get an integer, i.e., 16N+π 1
n − 16N 1

n = 16N+π−16N

n ∈ Z. This proves that the
length of the period of 1

n is equal to the smallest integer p such that n | 16N+π − 16N for some sufficiently
large N , or equivalently the smallest π such that

16N+π ≡ 16N (mod n) =⇒ 16π ≡ 1 (mod n)

(since gcd(16, n) = 1).

When n is odd, π is equal to the multiplicative order of 16 (mod n). However, 16 = 24, so we need 24k ≡ 1
(mod n) for the smallest k possible. Note that 22φ(n) ≡ 1 (mod n) and 4 | 2φ(n) since φ(n) is even. Thus,

π ≤ 2φ(n)

4
≤ n− 1

2
=⇒ π ≤

⌊
n− 1

2

⌋
≤
⌊

68− 1

2

⌋
= 33

as long as n ≤ 68. When n = 69, note that 1611 ≡ 1 (mod 69). When n = 67, which is prime, we can get
prove that we have equality for this inequality by showing that 2 is a primitive root (mod 67). It suffices to
show that 233, 222, 26 6≡ 1 (mod 67), which is fairly simple.

8. It is given that there exists a unique triple of positive primes (p, q, r) such that p < q < r and

p3 + q3 + r3

p+ q + r
= 249.

Find r.

Proposed by David Altizio

Solution. We recall the identity p3 + q3 + r3 − 3pqr = (p+ q + r)(p2 + q2 + r2 − pq − qr − rp). Hence,

(p+ q + r)(p2 + q2 + r2 − pq − qr − rp) = p3 + q3 + r3 − 3pqr = 249(p+ q + r)− 3pqr

=⇒ 3pqr = (p+ q + r)(249 + pq + qr + pr − p2 − q2 − r2)

The left hand side is a product of primes, so there are only a finite number of ways we can assign these primes
to the factors on right hand side. Note that p + q + r > 3 and p + q + r > 3p, so the first thing we try is
setting p+ q + r = 3q. Then

0 = 249 + q(p+ r)− p2 − q2 − r2 = 249 + q2 − p2 − r2

which implies 3p2 − 2pr + 3r2 = 996. Consequently, 3|2pr and since r > p, we get that p = 3; plugging this

into the newly derived equation gives r = 19 . It is not hard to verify that (p, q, r) = (3, 11, 19) is indeed a
valid triple.

9. Let φ(n) denote the number of positive integers less than or equal to n which are coprime to n. Find the
value of

∞∑
n=1

φ(n)

5n + 1
.

Proposed by Gunmay Handa

Solution. Let x = 1
5 . Then

∞∑
n=1

φ(n)

x−n + 1
=

∞∑
n=1

φ(n)

x−n − 1
− 2

∞∑
n=1

φ(n)

x−2n − 1
=

∞∑
n=1

φ(n)xn

1− xn
− 2

∞∑
n=1

φ(n)x2n

1− x2n
.



The key claim is then that
∑∞
n=1

φ(n)tn

1−tn = t
(1−t)2 for |t| < 1. We have

∞∑
n=1

φ(n)tn

1− tn
=

∞∑
n=1

φ(n)

∞∑
m=1

tnm =

∞∑
s=1

sts =
t

(1− t)2

where we used the fact that
∑
d|n φ(d) = n. Finally, the desired value is just

x

(1− x)2
− 2

x2

(1− x2)2
=
x(1 + x2)

(1− x2)2
=

65

288
.

10. Let a1 < a2 < · · · < ak denote the sequence of all positive integers between 1 and 91 which are relatively
prime to 91, and set ω = e2πi/91. Define

S =
∏

1≤q<p≤k

(ωap − ωaq ) .

Given that S is a positive integer, compute the number of positive divisors of S.

Proposed by David Altizio

Solution. Let Φn(x) be the nth cyclotomic polynomial. Let S be the desired product and for each 1 ≤ i ≤ k
define Pi(x) = Φ91(x)

x−ωai . Then we have

S2 =
∏
p6=q

(ωaq − ωap) =

k∏
i=1

Pi(ω
ai).

Since Φ91(ωai) = 0 by definition, L’Hopital’s rule gives Pi(ω
ai) = Φ′91(ωai). Now by well-known properties of

cyclotomic polynomials,

Φ91(x) =
x91 − 1

Φ1(x)Φ7(x)Φ13(x)
=

(x91 − 1)(x− 1)

(x7 − 1)(x13 − 1)
.

Since (ωai)91 = 1 for all i, we have by the product rule that

Φ′91(ωai) =
d

dx

[
(x91 − 1) · (x− 1)

(x7 − 1)(x13 − 1)

]
x=ωai

= 91(ωai)90 · ωai − 1

((ωai)7 − 1)((ωai)13 − 1)
.

We of course have that
∏
i(1 − ωai) = Φ91(1). Note that the sequence ((ωai)7)1≤i≤k must contain each

of the twelve nontrivial 13th roots of unity exactly six times. Hence
∏
i(1 − (ωai)7) = Φ13(1)6. Similarly,∏

i(1− (ωai)13) = Φ7(1)12. Since
∏
i ω

ai = 1 (each root of unity has a conjugate pair, and gcd(ai, 91) = 1⇔
gcd(91− ai, 91) = 1), it follows that

|S2| = 91ϕ(91)Φ91(1)

Φ7(1)12Φ13(1)6
.

We have Φ7(1) = 7, Φ13(1) = 13, ϕ(91) = 6 · 12 = 72, and

Φ91(1) = lim
x→1

x91 − 1

x13 − 1
· x− 1

x7 − 1
= 7 · 1

7
= 1.

So |S|2 = 772−121372−6 and |S| = 7301333, giving a final answer of 31 · 34 = 1054 .

Remark. It is possible to do the computations above without using calculus. For example, another solution
which is longer but more elementary is to employ PIE + complementary counting, since the above product
excludes all terms of the form ωi0 − ωj0 where i0j0 is a multiple of 7 or 13. (This was the author’s original
solution.)


