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Number Theory Solutions Packet

1. Suppose a, b, and c are relatively prime integers such that

5 i o= 2 and o :)_ o=
What is the value of |c|?
Proposed by David Altizio
Solution. The given equations rewrite to 2c = a — 2b and 3¢ = b — 3a, which implies

3(a—2b)=2(b—3a) = 9a=8b.
Hence a = £8 and b = £9. Now back-substitution yields ¢ = £5, giving an answer of .

2. Find all integers n for which (n — 1) - 2™ + 1 is a perfect square.
Proposed by Cody Johnson

Solution. First note that if n < 0, then (n — 1)2™ is an integer precisely when n > —1; checking yields
n =0 and n = —1 as solutions. Now assume n > 0. We need to solve

?=(n-1)-2"+1
or
(z—1D(xz+1)=(n-1) 2"
Note that ged(z — 1,z + 1) < 2, so 2"~! completely divides one either z — 1 or z + 1. Supposing that
271 | x — 1, we have
2=(x4+1)—(z—-1)<2(n—-1)-2""1
since x —1 > 2""! and so z +1 < 2(n — 1). For n > 4, this is impossible because 2(n — 1) — 2”71 < 0. On
the other hand, if 2°~! | # + 1, then we have
2=(z+1)—(zr—1)>2""1-2n—-1)>2

for all n > 4. In either case, n > 4 is impossible, so we only need to test n < 4. We get n =| —1,0,1,4 | are
the answers.

3. Let S be the set of natural numbers that cannot be written as the sum of three squares. Legendre’s three-
square theorem states that S = {4%- (804 7) | a,b > 0}. Find the smallest n € N such that n and n + 1 are
both in S.

Proposed by Cody Johnson

Solution. If n is even, then 4 | n, so n+ 1 =1 (mod 4) which is not 7 (mod 8), so it is not in S. Thus, n
isodd,so8|n+1,s016 | n+1,son+1>16-(8-0+47) = 112. Thus, n > , which we can easily verify
works sincen =4%-(8-13+7) € Sandn+1=4%2-(8-0+7) € S.

4. Let a > 1 be a positive integer. The sequence of natural numbers {a,} is defined as follows: a; = a and for
all n > 1, a,,11 is the largest prime factor of a? — 1. Determine the smallest possible value of a such that the
numbers ai, as,...,ar are all distinct.

Proposed by David Altizio

Solution. First remark that if a = 2, then the sequence repeats 2 +— 3 +— 2 +— -- - so in order to minimize
a7 it must be the case that a7 = 2 and ag > 3. (Note that the other way around is not possible, since for no
integer a > 4 is a® — 1 a power of 2.) Now examine as, noting that it is prime. Then a3 must satisfy

az | a3 — 1= (ag — 1)(az + 1).
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Since as is an odd prime, as — 1 and as + 1 are both even, and so az < ‘IQTH Thus
ag > 2a3—1>4a4 —3 > --- > 16ag — 15 > 33,
where here we use the fact that ag > 3. Trying a few primes past 33 shows that in fact
47— 23— 11— 5—3—2

gives a valid sequence ao, ..., a7 of distinct integers. Hence the smallest possible value of as is 47, meaning
the smallest possible value of a; is .

. It is given that there exist unique integers my,...,migg such that
mi mo mi00
0< e d 2018 = e )
<mp <meo < < Migp an 8 <1>+<2>+ +<100>

Find mq +mo + - -+ + mqgo.
Proposed by David Altizio

Solution. Say the sequence jumps at ¢ if m; 1 —m; > 1. If mygo > 102, then ("11(1)[(’)0) > (}83) = 5151 > 2018.
Thus, the sequence jumps at most twice, i.e., for some 1 < a < b < 100, we have m; =7 —1forall 1 <i < a,
m; =1 for all a <i <b,and m; =i+ 1 for all b < i < 100. Hence, we have

2018:§:<i;1>+ z”: <z>+ % (Hj—l):b_a+101(2102)_(b+1)2(b+2)7

=1 i=a+1 i=b+1

so 24
3132 = i

+a

Trying some values of b near /2 - 3132 ~ /6400 = 80, we find that b = 78, a = 51 works. Thus, the answer is

51 78 100 100(101)
;(z—l)+i;521+i;:9(z+l) = T—51+22:.

Remark. This is called the 100-nomial representation of 2018. In general, for any positive integers m and n,
one can show that the m-nomial representation of n is unique.

. Let ¢(n) denote the number of positive integers less than or equal to n that are coprime to n. Find the sum
of all 1 < n < 100 such that ¢(n)|n.

Proposed by Andrew Kwon

Solution. We claim that for n > 1, ¢(n)|n <= n = 293", where a > 1 and b > 0. Evidently n must be
even. Let n = 2%m, where m is odd. If m has more than 2 prime distinct prime factors, then ¢(m) will be
divisible by 4. However, then 297122~ 1p(m) = ¢(n)|n, which is a contradiction. Therefore, m = p® for some
prime p and nonnegative integer b. Then, p — 1|p(n)|n, and so p — 1 must be a power of 2. Upon analogous
considerations as before to the largest power of 2 that can divide ¢(n), we find that p — 1 is necessarily equal
to 2, and so p = 3.

We thus must find the sum of all integers of the form 223% < 100, where @ > 1 and b > 0, and casing on the
value of b we can calculate this with geometric series to be .

. For each ¢ € Q, let 7(q) denote the period of the repeating base-16 expansion of ¢, with the convention of
m(q) = 0 if ¢ has a terminating base-16 expansion. Find the maximum value among

() () (B
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Proposed by Cody Johnson

Solution. Suppose % has a repeating base-16 expansion with period 7. If we multiply % by a large enough
power of 16 (say 167), then the fractional part will look like 0.b; ...b,. If we then multiply this by just 16™
and take the difference, we will get an integer, i.e., 16N+’T% — IGN% = 1677"16" < 7 This proves that the
length of the period of % is equal to the smallest integer p such that n | 16 7™ — 16"V for some sufficiently

large N, or equivalently the smallest 7 such that
167" = 16" (modn) = 16" =1 (mod n)

(since ged(16,n) = 1).

When n is odd, 7 is equal to the multiplicative order of 16 (mod n). However, 16 = 2%, so we need 2% =1
(mod n) for the smallest k possible. Note that 22?(") =1 (mod n) and 4 | 2¢(n) since ¢(n) is even. Thus,

WSMSE:WS n—1 < 68 —1 :
4 2 2 2
as long as n < 68. When n = 69, note that 16'! = 1 (mod 69). When n = 67, which is prime, we can get

prove that we have equality for this inequality by showing that 2 is a primitive root (mod 67). It suffices to
show that 233,222 26 £ 1 (mod 67), which is fairly simple.

. Tt is given that there exists a unique triple of positive primes (p, ¢,r) such that p < g < r and

p3+q3+1"3
p+q+r

= 249.

Find r.

Proposed by David Altizio

Solution. We recall the identity p + ¢ + 72 — 3pqr = (p + ¢ + r)(p* + ¢* + r? — pqg — qr — rp). Hence,
(p+a+r)0* +q° +r° —pg—qr—rp) =p° + ¢’ + 1 = 3pgr = 249(p + q + 1) — 3pqr

= 3pqr = (p+q+7)(249 + pg + qr + pr —p* — ¢* — %)

The left hand side is a product of primes, so there are only a finite number of ways we can assign these primes
to the factors on right hand side. Note that p+ ¢+ r > 3 and p+ ¢ + r > 3p, so the first thing we try is
setting p + g +r = 3¢q. Then

0=2494q(p+r)—p* —¢* —1° =249+ ¢* — p* —1°

which implies 3p? — 2pr + 3r2 = 996. Consequently, 3|2pr and since r > p, we get that p = 3; plugging this
into the newly derived equation gives r = . It is not hard to verify that (p,q,r) = (3,11,19) is indeed a
valid triple.

. Let ¢(n) denote the number of positive integers less than or equal to n which are coprime to n. Find the

value of -
Z B(n)
5m 41

n=1

Proposed by Gunmay Handa

Solution. Let x = % Then
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10.

The key claim is then that Y~ , ¢1 ”f e f)z for |t| < 1. We have

R D NUD WS WS
n=1 n=1 m=1 s=1

where we used the fact that _;,, #(d) = n. Finally, the desired value is just

x 2 x(l+a?) | 65

(1—x)2 “(1—22)2 (1—22)2 |288]

Let a1 < as < -+ < ap denote the sequence of all positive integers between 1 and 91 which are relatively
prime to 91, and set w = e2™/91 Define

S = H (W — wf).
1<g<p<k
Given that S is a positive integer, compute the number of positive divisors of S.

Proposed by David Altizio

Solution. Let ®,,(z) be the n'" cyclotomic polynomial. Let S be the desired product and for each 1 < i < k
define P;(z) = 222 Then we have

S = [J(w = w™) =] Pi(w™).

p#q =1

Since ®g1 (w®) = 0 by definition, L’Hopital’s rule gives P;(w®) = &g, (w*). Now by well-known properties of
cyclotomic polynomials,
| 29 —1)(z - 1)
o1 (2) = = 7 ) 13 :
Dy (z)Pr(2)P13(x) (27— 1)(z13 —1)

Since (w%)?1 =1 for all i, we have by the product rule that

q)él(wai) - % (1‘91 - 1) . ($7 (T)in; — ]-) T=wei - 91(wai)90 .

(lj_l

(w*)" = D((w*)*? = 1)

We of course have that [],(1 — w®) = ®g;(1). Note that the sequence ((w*)");<;<x must contain each
of the twelve nontrivial 13" roots of unity exactly six times. Hence [[;(1 — (w®)") = ®13(1)%. Similarly,
[T,(1 = (w)'3) = @7(1)'2. Since [, w* =1 (each root of unity has a conjugate pair, and ged(a;,91) =1 <
ged(91 — a;,91) = 1), it follows that

62 = 917D dg; (1)
D7(1)12P13(1)6°
We have ®7(1) =7, ®15(1) = 13, ¢(91) =612 = 72, and
21 —-1 -1

(I)gl() Iim ——— - ———=7-

e1gpl3 —1 27 -1 =1

=

So |S|? = 772712137276 and |S| = 7301333, giving a final answer of 31 - 34 =| 1054 |.

Remark. It is possible to do the computations above without using calculus. For example, another solution
which is longer but more elementary is to employ PIE + complementary counting, since the above product
excludes all terms of the form w® — w7 where ipjo is a multiple of 7 or 13. (This was the author’s original
solution.)



