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Geometry Solutions Packet

1. Let ABC be a triangle. Point P lies in the interior of ABC such that ZABP = 20° and LACP = 15°.
Compute ZBPC — ZBAC.

Proposed by David Altizio
Solution. Note that
/BPC + /PBC + ZPCB = 180° = ZBAC + (20° + ZPBC) + (15° + ZPCB);

canceling Z/PBC + ZPCB from both sides and rearranging yields the desired answer of .

2. Let ABCD be a square of side length 1, and let P be a variable point on CD. Denote by Q the intersection
point of the angle bisector of ZAPB with AB. The set of possible locations for @ as P varies along CD is a
line segment; what is the length of this segment?

Proposed by David Altizio
Solution. Note that
PB pPC?2+4CB? PC?+1
PA NV PD2+DA2  \| (1-POC)2+1°
This increases as PC increases, so by the Angle Bisector Theorem g—ﬁ increases as well. It follows that the
endpoints of this line segment occur precisely when P = C or P = B.
Let Qo be the foot of the angle bisector of ZAC'D. By another use of the Angle Bisector Theorem,
A 1—-QoB
Vo — Qo _ 1-CQo
QoB QoB
Similarly, if Q; is the foot of the angle bisector from ZADB, AQ, = /2 — 1. Tt follows that the length of the

desired line segment is
1-2(vV2-1)=[3-2V2|

3. Let ABC be a triangle with side lengths 5, 4y/2, and 7. What is the area of the triangle with side lengths
sin A, sin B, and sin C'?

= Q()BZ\/é—l.

Proposed by David Altizio

Solution. Let R be the circumradius of AABC. The key is to realize that by the Extended Law of Sines,

. a . b . c
smA—ﬁ, smB—ﬁ7 and smC—ﬁ.

It follows that the triangle with side lengths sin A, sin B, and sin C' is similar to AABC with scale factor ﬁ
Thus, it suffices to compute the area of AABC and divide by 4R? to get the answer.

WLOG let AB = 4v/2, AC =5, and BC = 7. Let D denote the foot of the altitude from A to BC. The Law
of Cosines applied to AABC' yields

52472 — (4v2)2 3

C = -
o8 2.5.7 5’
so sinC = % and AD = 4. This means that the area of AABC is % -4-7=14 and
42  4/2 5

T 2sinC 8/5 2

Thus the desired answer is

4-(
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4. Suppose AB is a segment of unit length in the plane. Let f(X) and g(X) be functions of the plane such that
f corresponds to rotation about A 60° counterclockwise and g corresponds to rotation about B 90° clockwise.
Let P be a point with g(f(P)) = P; what is the sum of all possible distances from P to line AB?

Proposed by Gunmay Handa

Solution. In this solution, all angles are directed. For any line ¢, let ¢4 = f(£), 42 = g(¢1). Then £(¢,¢,) =
60° and Z(¢1,02) = —90°, so Z(¢,¢5) = —30°. This tells us that the composition of these two rotations itself
corresponds to a rotation of 30° clockwise; evidently, rotations can only have one fixed point, which is their
center. Construct the point C' with Z(C A, AB) = 30° and Z(CB, BA) = —135°; it is not hard to see that
g9(f(C)) = C (in this instance, each function is equivalent to reflection about AB). Let C’ be the projection
of C onto AB, then CC’ cot30° — CC’ cot 45° = AC' — BC' =1 and so

co - 1 1 |1+V3
~ cot30° —cotd5°  3-1 | 2

5. Select points 11, Ty and T3 in R3 such that T} = (0,1,0), Ty is at the origin, and T3 = (1,0,0). Let Ty be a
point on the line x = y = 0 with Ty # 1. Suppose there exists a point X in the plane of AT;T5T3 such that
the quantity (XT;)[T;+1Ti42T;43] is constant for all i = 0 to 2 = 3, where [P] denotes area of the polygon P
and indices are taken modulo 4. What is the magnitude of the z-coordinate of 17

Proposed by Gunmay Handa

Solution. Let M be the midpoint of T;T3. We claim that X is the reflection M’ of M across T. To prove
this, first remark that
XTy [NWTTo

%(T:[TQ)(TQTO) . T1T2 -1
XT3 DT §(Tols)(ToTy) T3Tx
Thus XT} = XT3; since X lies in the plane T175T3, X must lie on the perpendicular bisector of T7T5. Now
applying similar logic on the points 75 and Tp yields
XT, [Ty  ToM
XTy [NWTsT,] ToM’

Now remark that as X moves farther away from T3, the ratio §% gets closer to 1 (without ever equalling

one). Thus, either X = M or X = M’. To show it is not M, suppose it were, and write
MT,; _ VEVEYEY _ T,
MT, [T, Ty

(%)

But this is not possible, since MT; < TyT; and MTy > ToTy. Thus the only possible option is T = M’ as
desired.

Now let z be the z-coordinate of Ty. Using (*) but with M’ in place of M gives

1 BT MT /52 5

. DTy, MT, V1/2 + 22 V122

solving this equation yields z =

g\a

6. Let w; and wy be intersecting circles in the plane with radii 12 and 15, respectively. Suppose I is a circle such
that wy and wy are internally tangent to I' at X; and X5, respectively. Similarly, £ is a line that is tangent to
wy and we at Y7 and Ys, respectively. If X7 Xo = 18 and Y1Y5 = 9, what is the radius of I'?

Proposed by Gunmay Handa

Solution. First we compute the distance between their centers, which is just

92 1 (15 — 12)2 = 3V/10.
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Now let O, O3, O be the centers of wy, wa, and T', respectively, and let R := OX; = OX5. Since /X10X5 =
/01005, we have

R*+R*—18°  OX{+O0X3-X1X§ 0O0i+003 0,05 (R-12)°+(R—15)° - (31/10)2
R2 00X, -0X, 00, - 00, (R —12)(R — 15)

Strategically subtracting 2 from both sides, we get

—-18% —81
Rz (R—12)(R—15)

— R?=4(R—-12)(R—15) = R=18+2V21.

Thus the answer is | 18 + 2v/21 | since the other root is extraneous (R needs to be at least 9 or else it will not
contain two points X, X» at distance 18 from each other).

OR

Solution. Denote by P and @ the intersection points of I' and ¢, with P, Y3, Y2, and @ appearing in that
order. Let M denote the midpoint of the minor arc PQ. Note that by Archimedes’ Lemma, Xy, Y7, and M
are collinear, as are X5, Yo, and M. Furthermore, angle chasing yields

MQ+XP NP+ PX

/MY1Q = 5 5 =/ MXsX1,
and so AMY1Ys; ~ AM X5 X, with ratio of similitude 2.
Now as in the first solution let R denote the radius of I'. Then homothety yields %3\/} = 1—5 and fé}/f[ = %

As a result,

1 (MY, MYy \ . X111 1 XoYo\  (R—12)(R—15)
4 \MX, MX,) XM XoM ) R? '
Solving this equation yields R =|18 + 2v/21 | as before.

. Let ABC be a triangle with AB = 10, AC' = 11, and circumradius 6. Points D and E are located on the
circumcircle of AABC such that AADE is equilateral. Line segments DE and BC intersect at X. Find %.

Proposed by David Altizio

Solution. Set AX =d, BX =m, CX =n. Let w denote the circle centered at A with radius AD = AFE.
Then X lies on the radical axis of ®(ABC) and w, and so the powers of X with respect to both circles are
equal. In other words,

mn=BX-XC=DX-XE=AD?—-d*=3R*-d*

This rearranges to mn + d? = 3R?, or, after multiplying by a,
3R%a = amn + ad® = b*m + *n,

where the last equality is an application of Stewart. Now substituting a = m + n into the above equality
yields

2 32 2 m_3R2—02_ 8
3R*(m+n)=bm+cn = el ey Rl k.

Remark. Essentially, we are applying Stewart’s Theorem on two triangle/cevian pairs for which the value
of d? + mn is the same: the values of d? are identical trivially, while the values of mn are equal by Power of
a Point.



CMIMD 2018

8. In quadrilateral ABCD, AB =2, AD =3, BC =CD :£7 and ZDAB = 60°. Semicircles v; and v, are
erected on the exterior of the quadrilateral with diameters AB and AD; points E # B and F' # D are selected
on 71 and 7 respectively such that ACFEF is equilateral. What is the area of ACEF'?

Proposed by Gunmay Handa

Solution. The following solution is intended to optimize the amount of arithmetic needed; more staight-
forward solutions are possible.

First note that ACDB is equilateral, so there exists a spiral similarity between ACBD and ACFEF; this
implies that DF = EB. Translate by vector Bb, and denote images with a ’; we have that ADFE’ is
equilateral since DF = DE' and Z(DF,DE') = Z(DF,BE) = 60°. Now let ® denote the transformation
of the plane corresponding to rotation about C' by 60°, as seen in the figure, and set A* = ®(A) for ease of
typesetting. Then ZA*DA = 120° since ® takes AB to A*D and ZBAD = 60°. In addition, remark that
ANA*FD = NAEB since ® takes the latter triangle to the former. This has many implications: F' is the foot
of the altitude from D to AA*, A*F = AF, and ZEAF = 120°. (Convince yourself that these properties
hold!)

Now compute AA* = /19 by Law of Cosines, so comparing areas gives DF = ,/%. Thus,

EF? = AF? + AE?> + AE - AF = AF? + A*F?> + AF - A*F

[ o7 [ o7 7-12 277
=(AF + A*F)? — AF - A*F = (V192 — /4 - =4 /9 - = =19 - ——= ==_,
(AF+ ) (V19) 19 9 19 9 19 19

It follows easily that the area of ACEF is 27778/5 .

9. Suppose & # & are two intersecting ellipses with a common focus X; let the common external tangents of &;
and & intersect at a point Y. Further suppose that X; and X5 are the other foci of £ and &, respectively,
such that X; € & and Xs € &;. If X1 X5 =8, XX5 =7, and XX; =9, what is XY ?2?

Proposed by Gunmay Handa
Solution. Our solution proceeds in two lemmas.

Lemma 1. Suppose A1 and As are the reflections of X over each of the common external tangents. Then'Y
is the circumcenter of ®(A1X Az); moreover, Y € X1 X5.
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10.

Proof. Let X3 be the the tangency point of £ nearer to A;. Then
X1A1 = X1X3 +X3A1 = X1X3 + X3X =15

by the reflection property of ellipses. Hence we know that {A;, Ao} are the common points of the circles
centered at X; and Xy with radii 15 and 17, respectively. Finally, the common external tangents and the line
X1 X5 comprise the set of perpendicular bisectors of AX Aj As; this implies the conclusion. O

Lemma 2. The product of distances from the foci to a variable tangent of a fixed ellipse is constant.

Proof. Given an ellipse with foci Fi, Fy, let P; and P, be the projections of F; and Fy onto an arbitrary
tangent to the ellipse at the point X. Let M be the midpoint of F| Fy; the reflection of P» about M produces
a point Pz with Fo P, = FyP3. In addition, we know that P;, P> lie on a circle centered at M with radius
W by the reflection property and consequent dilations at F5 and F; with ratio %, respectively. Hence,

P F, - P Fy, = P|F, - PyF) is fixed at (FlX'gF?X)2 - (F12F"’ )2 by Power of a Point on this circle. O

Let /1 be a common external tangent of the two ellipses. Then

YX,  d(Xy,6)  d(Xy,6)d(X,6)  152-92 3

YX, d(Xy,6) d(Xy, 0)d(X, ) 172-72 5
Since X1 X5 = 8, we know Y X; = 12. Note that AA; X X5 is right, so
AY? = A XE 4+ X1Y? =157 4 122 = 369

and since Y is the circumcenter of ®(A; X Ay) we know XY? = A;Y? = , as desired (alternatively, one
could use Stewart’s theorem).

Let ABC be a triangle with circumradius 17, inradius 4, circumcircle I" and A-excircle . Suppose the
reflection of € over line BC is internally tangent to I'. Compute the area of AABC.

Proposed by Gunmay Handa

Solution. In this solution, define BC = a and cyclic variants, and let K, R, s, r, r, be the area, circum-
radius, semiperimeter, inradius and A-exradius of AABC, respectively.
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Denote €' as the reflection of Q over BC. Let D be the tangency point of €' on BC, and suppose X is the
tangency point of ' on I'; note by Archimedes’ lemma that DX passes through the midpoint M4 of minor
arc BC in T'. Let £ be the tangent to I" at M4, D’ be the antipode of D in €, and Y = DD’ N {. From
ADMAY ~ ADD'X we know DY -DD' = DM 4-DX = DB-DC. Hence DD'-DY = 2r,-DY = (s—b)(s—c¢)
and from the well-known identity (s — b)(s — ¢) = rrq we get that DY = . Finally, if M is the midpoint of
BC, then MM, = DY and so Power of a Point at M gives MB - MC = 5 (2R — g) = 64, whence a = 16.

By well-known formulas, we have

K:4(16+b+c> 16bc

2 T 417

so that b+ ¢ = £532 and be = 125, Then by Heron’s formula,

16K? = (a+b+c)(—a+b+c)a—b+e)at+b—c)

:2f<<—a+K;32)(aQ—(b—C)2)

K (K —64
2

5 ) (256 — (b + ¢)* + 4bc)

K (K —64 K?
—2( 2 )(33K‘4>

so 256 = (K —64)(132 — K) = K = 68,128. It is easy to check that only 128 yields real b and ¢, so the

answer is .




