
Geometry Solutions Packet
1. Let ABC be a triangle. Point P lies in the interior of ABC such that ∠ABP = 20◦ and ∠ACP = 15◦.

Compute ∠BPC − ∠BAC.

Proposed by David Altizio

Solution. Note that

∠BPC + ∠PBC + ∠PCB = 180◦ = ∠BAC + (20◦ + ∠PBC) + (15◦ + ∠PCB);

canceling ∠PBC + ∠PCB from both sides and rearranging yields the desired answer of 35◦ .

2. Let ABCD be a square of side length 1, and let P be a variable point on CD. Denote by Q the intersection
point of the angle bisector of ∠APB with AB. The set of possible locations for Q as P varies along CD is a
line segment; what is the length of this segment?

Proposed by David Altizio

Solution. Note that

PB

PA
=

√
PC2 + CB2

PD2 +DA2
=

√
PC2 + 1

(1− PC)2 + 1
.

This increases as PC increases, so by the Angle Bisector Theorem QB
QA increases as well. It follows that the

endpoints of this line segment occur precisely when P = C or P = B.

Let Q0 be the foot of the angle bisector of ∠ACD. By another use of the Angle Bisector Theorem,

√
2 =

AQ0

Q0B
=

1−Q0B

Q0B
⇒ Q0B =

√
2− 1.

Similarly, if Q1 is the foot of the angle bisector from ∠ADB, AQ1 =
√

2− 1. It follows that the length of the
desired line segment is

1− 2(
√

2− 1) = 3− 2
√

2 .

3. Let ABC be a triangle with side lengths 5, 4
√

2, and 7. What is the area of the triangle with side lengths
sinA, sinB, and sinC?

Proposed by David Altizio

Solution. Let R be the circumradius of 4ABC. The key is to realize that by the Extended Law of Sines,

sinA =
a

2R
, sinB =

b

2R
, and sinC =

c

2R
.

It follows that the triangle with side lengths sinA, sinB, and sinC is similar to 4ABC with scale factor 1
2R .

Thus, it suffices to compute the area of 4ABC and divide by 4R2 to get the answer.

WLOG let AB = 4
√

2, AC = 5, and BC = 7. Let D denote the foot of the altitude from A to BC. The Law
of Cosines applied to 4ABC yields

cosC =
52 + 72 − (4

√
2)2

2 · 5 · 7
=

3

5
,

so sinC = 4
5 and AD = 4. This means that the area of 4ABC is 1

2 · 4 · 7 = 14 and

R =
4
√

2

2 sinC
=

4
√

2

8/5
=

5√
2
.

Thus the desired answer is
14

4 · ( 5√
2
)2

=
7

25
.



4. Suppose AB is a segment of unit length in the plane. Let f(X) and g(X) be functions of the plane such that
f corresponds to rotation about A 60◦ counterclockwise and g corresponds to rotation about B 90◦ clockwise.
Let P be a point with g(f(P )) = P ; what is the sum of all possible distances from P to line AB?

Proposed by Gunmay Handa

Solution. In this solution, all angles are directed. For any line `, let `1 = f(`), `2 = g(`1). Then ∠(`, `1) =
60◦ and ∠(`1, `2) = −90◦, so ∠(`, `2) = −30◦. This tells us that the composition of these two rotations itself
corresponds to a rotation of 30◦ clockwise; evidently, rotations can only have one fixed point, which is their
center. Construct the point C with ∠(CA,AB) = 30◦ and ∠(CB,BA) = −135◦; it is not hard to see that
g(f(C)) ≡ C (in this instance, each function is equivalent to reflection about AB). Let C ′ be the projection
of C onto AB, then CC ′ cot 30◦ − CC ′ cot 45◦ = AC ′ −BC ′ = 1 and so

CC ′ =
1

cot 30◦ − cot 45◦
=

1√
3− 1

=
1 +
√

3

2
.

5. Select points T1, T2 and T3 in R3 such that T1 = (0, 1, 0), T2 is at the origin, and T3 = (1, 0, 0). Let T0 be a
point on the line x = y = 0 with T0 6= T2. Suppose there exists a point X in the plane of 4T1T2T3 such that
the quantity (XTi)[Ti+1Ti+2Ti+3] is constant for all i = 0 to i = 3, where [P] denotes area of the polygon P
and indices are taken modulo 4. What is the magnitude of the z-coordinate of T0?

Proposed by Gunmay Handa

Solution. Let M be the midpoint of T1T3. We claim that X is the reflection M ′ of M across T2. To prove
this, first remark that

XT1
XT3

=
[T1T2T0]

[T2T3T0]
=

1
2 (T1T2)(T2T0)
1
2 (T2T3)(T2T0)

=
T1T2
T3T2

= 1.

Thus XT1 = XT3; since X lies in the plane T1T2T3, X must lie on the perpendicular bisector of T1T3. Now
applying similar logic on the points T2 and T0 yields

XT2
XT0

=
[T1T2T3]

[T1T3T0]
=
T2M

T0M
.

Now remark that as X moves farther away from T2, the ratio XT2

XT0
gets closer to 1 (without ever equalling

one). Thus, either X ≡M or X ≡M ′. To show it is not M , suppose it were, and write

MT1
MT0

=
[T1T2T3]

[T2T3T0]
=
T2T1
T2T0

. (∗)

But this is not possible, since MT1 < T2T1 and MT0 > T2T0. Thus the only possible option is T ≡ M ′ as
desired.

Now let z be the z-coordinate of T0. Using (∗) but with M ′ in place of M gives

1

z
=
T2T1
T2T0

=
M ′T1
M ′T0

=

√
5/2√

1/2 + z2
=

√
5

1 + 2z2
;

solving this equation yields z =
√
3
3 .

6. Let ω1 and ω2 be intersecting circles in the plane with radii 12 and 15, respectively. Suppose Γ is a circle such
that ω1 and ω2 are internally tangent to Γ at X1 and X2, respectively. Similarly, ` is a line that is tangent to
ω1 and ω2 at Y1 and Y2, respectively. If X1X2 = 18 and Y1Y2 = 9, what is the radius of Γ?

Proposed by Gunmay Handa

Solution. First we compute the distance between their centers, which is just√
92 + (15− 12)2 = 3

√
10.



Now let O1, O2, O be the centers of ω1, ω2, and Γ, respectively, and let R := OX1 = OX2. Since ∠X1OX2 =
∠O1OO2, we have

R2 +R2 − 182

R2
=
OX2

1 +OX2
2 −X1X

2
2

OX1 ·OX2
=
OO2

1 +OO2
2 −O1O

2
2

OO1 ·OO2
=

(R− 12)2 + (R− 15)2 − (3
√

10)2

(R− 12)(R− 15)
.

Strategically subtracting 2 from both sides, we get

−182

R2
=

−81

(R− 12)(R− 15)
=⇒ R2 = 4(R− 12)(R− 15) =⇒ R = 18± 2

√
21.

Thus the answer is 18 + 2
√

21 since the other root is extraneous (R needs to be at least 9 or else it will not
contain two points X1, X2 at distance 18 from each other).

OR

Solution. Denote by P and Q the intersection points of Γ and `, with P , Y1, Y2, and Q appearing in that
order. Let M denote the midpoint of the minor arc P̂Q. Note that by Archimedes’ Lemma, X1, Y1, and M
are collinear, as are X2, Y2, and M . Furthermore, angle chasing yields

∠MY1Q =
M̂Q+ X̂1P

2
=
M̂P + P̂X1

2
= ∠MX2X1,

and so 4MY1Y2 ∼ 4MX2X1 with ratio of similitude 2.

Now as in the first solution let R denote the radius of Γ. Then homothety yields X1Y1

X1M
= 12

R and X2Y2

X2M
= 15

R .
As a result,

1

4
=

(
MY1
MX2

)(
MY2
MX1

)
=

(
1− X1Y1

X1M

)(
1− X2Y2

X2M

)
=

(R− 12)(R− 15)

R2
.

Solving this equation yields R = 18 + 2
√

21 as before.

7. Let ABC be a triangle with AB = 10, AC = 11, and circumradius 6. Points D and E are located on the
circumcircle of 4ABC such that 4ADE is equilateral. Line segments DE and BC intersect at X. Find BX

XC .

Proposed by David Altizio

Solution. Set AX = d, BX = m, CX = n. Let ω denote the circle centered at A with radius AD = AE.
Then X lies on the radical axis of �(ABC) and ω, and so the powers of X with respect to both circles are
equal. In other words,

mn = BX ·XC = DX ·XE = AD2 − d2 = 3R2 − d2.

This rearranges to mn+ d2 = 3R2, or, after multiplying by a,

3R2a = amn+ ad2 = b2m+ c2n,

where the last equality is an application of Stewart. Now substituting a = m + n into the above equality
yields

3R2(m+ n) = b2m+ c2n ⇒ m

n
=

3R2 − c2

b2 − 3R2
=

8

13
.

Remark. Essentially, we are applying Stewart’s Theorem on two triangle/cevian pairs for which the value
of d2 +mn is the same: the values of d2 are identical trivially, while the values of mn are equal by Power of
a Point.



8. In quadrilateral ABCD, AB = 2, AD = 3, BC = CD =
√

7, and ∠DAB = 60◦. Semicircles γ1 and γ2 are
erected on the exterior of the quadrilateral with diameters AB and AD; points E 6= B and F 6= D are selected
on γ1 and γ2 respectively such that 4CEF is equilateral. What is the area of 4CEF?

Proposed by Gunmay Handa

Solution. The following solution is intended to optimize the amount of arithmetic needed; more staight-
forward solutions are possible.

First note that 4CDB is equilateral, so there exists a spiral similarity between 4CBD and 4CEF ; this
implies that DF = EB. Translate by vector ~BD, and denote images with a ′; we have that 4DFE′ is
equilateral since DF = DE′ and ∠(DF,DE′) = ∠(DF,BE) = 60◦. Now let Φ denote the transformation
of the plane corresponding to rotation about C by 60◦, as seen in the figure, and set A∗ = Φ(A) for ease of
typesetting. Then ∠A∗DA = 120◦ since Φ takes AB to A∗D and ∠BAD = 60◦. In addition, remark that
4A∗FD ∼= 4AEB since Φ takes the latter triangle to the former. This has many implications: F is the foot
of the altitude from D to AA∗, A∗F = AE, and ∠EAF = 120◦. (Convince yourself that these properties
hold!)

AB

C

D

E

F

A∗

Now compute AA∗ =
√

19 by Law of Cosines, so comparing areas gives DF =
√

27
19 . Thus,

EF 2 = AF 2 +AE2 +AE ·AF = AF 2 +A∗F 2 +AF ·A∗F

= (AF +A∗F )2 −AF ·A∗F = (
√

19)2 −
√

4− 27

19

√
9− 27

19
= 19− 7 · 12

19
=

277

19
.

It follows easily that the area of 4CEF is 277
√
3

76 .

9. Suppose E1 6= E2 are two intersecting ellipses with a common focus X; let the common external tangents of E1
and E2 intersect at a point Y . Further suppose that X1 and X2 are the other foci of E1 and E2, respectively,
such that X1 ∈ E2 and X2 ∈ E1. If X1X2 = 8, XX2 = 7, and XX1 = 9, what is XY 2?

Proposed by Gunmay Handa

Solution. Our solution proceeds in two lemmas.

Lemma 1. Suppose A1 and A2 are the reflections of X over each of the common external tangents. Then Y
is the circumcenter of �(A1XA2); moreover, Y ∈ X1X2.



Proof. Let X3 be the the tangency point of E1 nearer to A1. Then

X1A1 = X1X3 +X3A1 = X1X3 +X3X = 15

by the reflection property of ellipses. Hence we know that {A1, A2} are the common points of the circles
centered at X1 and X2 with radii 15 and 17, respectively. Finally, the common external tangents and the line
X1X2 comprise the set of perpendicular bisectors of 4XA1A2; this implies the conclusion.

X1 X2

X

Y

A1

A2

X3

Lemma 2. The product of distances from the foci to a variable tangent of a fixed ellipse is constant.

Proof. Given an ellipse with foci F1, F2, let P1 and P2 be the projections of F1 and F2 onto an arbitrary
tangent to the ellipse at the point X. Let M be the midpoint of F1F2; the reflection of P2 about M produces
a point P3 with F2P2 = F1P3. In addition, we know that P1, P2 lie on a circle centered at M with radius
F1X+F2X

2 by the reflection property and consequent dilations at F2 and F1 with ratio 1
2 , respectively. Hence,

P1F1 · P2F2 = P1F1 · P3F1 is fixed at (F1X+F2X
2 )2 − (F1F2

2 )2 by Power of a Point on this circle.

Let `1 be a common external tangent of the two ellipses. Then

Y X1

Y X2
=
d(X1, `1)

d(X2, `1)
=
d(X1, `1)d(X, `1)

d(X2, `1)d(X, `1)
=

152 − 92

172 − 72
=

3

5
.

Since X1X2 = 8, we know Y X1 = 12. Note that 4A1X1X2 is right, so

A1Y
2 = A1X

2
1 +X1Y

2 = 152 + 122 = 369

and since Y is the circumcenter of �(A1XA2) we know XY 2 = A1Y
2 = 369 , as desired (alternatively, one

could use Stewart’s theorem).

10. Let ABC be a triangle with circumradius 17, inradius 4, circumcircle Γ and A-excircle Ω. Suppose the
reflection of Ω over line BC is internally tangent to Γ. Compute the area of 4ABC.

Proposed by Gunmay Handa

Solution. In this solution, define BC = a and cyclic variants, and let K, R, s, r, ra be the area, circum-
radius, semiperimeter, inradius and A-exradius of 4ABC, respectively.



Denote Ω′ as the reflection of Ω over BC. Let D be the tangency point of Ω′ on BC, and suppose X is the
tangency point of Ω′ on Γ; note by Archimedes’ lemma that DX passes through the midpoint MA of minor
arc BC in Γ. Let ` be the tangent to Γ at MA, D′ be the antipode of D in Ω′, and Y ≡ DD′ ∩ `. From
4DMAY ∼ 4DD′X we know DY ·DD′ = DMA ·DX = DB ·DC. Hence DD′ ·DY = 2ra ·DY = (s−b)(s−c)
and from the well-known identity (s− b)(s− c) = rra we get that DY = r

2 . Finally, if M is the midpoint of

BC, then MMA = DY and so Power of a Point at M gives MB ·MC = r
2

(
2R− r

2

)
= 64, whence a = 16.

A

B C
D

D′

X

MA Y

By well-known formulas, we have

K = 4

(
16 + b+ c

2

)
=

16bc

4 · 17

so that b+ c = K−32
2 and bc = 17K

4 . Then by Heron’s formula,

16K2 = (a+ b+ c)(−a+ b+ c)(a− b+ c)(a+ b− c)

=
2K

r

(
−a+

K − 32

2

)
(a2 − (b− c)2)

=
K

2

(
K − 64

2

)
(256− (b+ c)2 + 4bc)

=
K

2

(
K − 64

2

)(
33K − K2

4

)
so 256 = (K − 64)(132 − K) =⇒ K = 68, 128. It is easy to check that only 128 yields real b and c, so the

answer is 128 .


