CMIMD 2018

Algebra Individual Finals Solutions

1. For all real numbers r, denote by {r} the fractional part of r, i.e. the unique real number s € [0,1) such that
r — s is an integer. How many real numbers x € [1,2) satisfy the equation {x2018} = {x2017}?

Proposed by David Altizio

Solution. The condition is equivalent to 22018 — 22017 L N for some integer N > 0 (since 22018 > 22017 que
to z > 1). Note that the function f(z) := 229*® — 22017 is continuous and increasing in [1,2), with f(1) =0
and f(2) = 2207, Thus, for every N € {0,...,22907 — 1} there exists exactly one zy € [1,2] for which

23018 = 22017 + N Thus the requested answer is | 22017 |

2. Compute the sum of the digits of

2018
[T (10**" =10*" +1) (102" +10* +1).
n=0
Proposed by Cody Johnson
Solution. Let a,, = 103" for notational convienence. Note that Apy1 = ad, so
2018 2018 ¢ 2018, 9 9
ap =1 JlZolanii —1)  a3g9 —1
H(ai—anle)(aiJranJrl):H 5 = T 018, -2
n=0 n=0 an — 1 Hn:O (0’72L - 1) ap — 1

Now a3 — 1 =99 and a3y;9 — 1 is just a number consisting of 2 - 32°1 nines, and so the answer is .
3. Let a be a complex number, and set «, 3, and « to be the roots of the polynomial 23 — 22 + ax — 1. Suppose
(@ +1)(8%+1)(y® + 1) = 2018.
Compute the product of all possible values of a.

Proposed by Keerthana Gurushankar and David Altizio

Solution. Let w be a primitive sixth root of unity, so that w® = —1 and w? —w + 1 = 0. Note that the
product on the LHS becomes

~[I(e+Dia—w)a o) = —p(~1)p(w)p(@).

cye
It is not hard to compute p(—1) = —3 — a. Moreover, note that
pw)=w®— (W +1)+aw=—-1+w(a—1),
and similarly p(@) = —1 + @w(a — 1). As a result,
pWp@) = (-1 +w@a—-1))(-1+a@a—-1)=1-(a—1)+(a—1)> =a® - 3a + 3.

So the given equation becomes
(a+3)(a® — 3a+3) = 2018

and the product of the roots is 2018 — 9 =| 2009 |.
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Combinatorics Individual Finals Solutions

1. How many nonnegative integers with at most 40 digits consisting of entirely zeroes and ones are divisible by
117

Proposed by David Altizio
Solution. Let w := exp(27i/11), and consider the function
F(2) = (14 2)(1+ 20 (1 + 219%) .. (1 + 2107

Using a roots of unity filter, we seek

1
‘ﬁLﬂ)+f()+fW) + f(w')]
Note that
F0F) = (14 wF)2(1 4+ w k)20 = =20k (1 4 k)20 — f: (40>w20k+jk _ i < 40 >wjk
=0 J j=—20 Jj+20

Thus, the answer is

10 20 20

2: E: <3+2d>Ak_j§%O

10
40 1 40\ (40
> =Wt =2 :
<j—k20> 211 ] <9)+ (20)

2. John has a standard four-sided die. Each roll, he gains points equal to the value of the roll multiplied by the
number of times he has now rolled that number; for example, if he first rolls were 3,3,2,3, he would have
346+ 249 =20 points. Find the expected number of points he’ll have after rolling the die 25 times.

Proposed by Patrick Lin

Solution. For general n, suppose instead that the multiplier is always decreased by one; we look at the
number of times we’ve previously rolled a number. Then in total, the number of points we get from rolling
4’s is equal to 4 times the number of pairs of rolls such that both rolls in the pair came out to be 4. In
this scenario, the expected number of points would then just be (g) - 1.5 “since each pair has a % chance to

i
contribute (in expectancy) 2 points.
Now, when we add one to every multiplier this just increases the expected number of points by %n, so the
answer is g(g) + %n = %n (1 + "T_l) Substituting n = 25 yields an answer of .

3. Let F be a family of subsets of {1,2,...,2017} with the following property: if S; and Sy are two elements of
F with S; € Sa, then |Ss \ S1| is odd. Compute the largest number of subsets F may contain.

Proposed by David Altizio

Solution. We claim the answer is (fgég) .

First, we show that |F| > (fgég) +1= 2@83;) + 1 is impossible. Assume for the sake of contradiction there
exists such a family F with at least that many elements, and set N = |F|. Consider the poset (F,C) of
all subsets in F ordered by inclusion. Note that F is a subset of 2[2°'7] meaning that the poset P can be
embedded into the Boolean lattice Bggi7'. By Sperner, the maximum size of an antichain in this lattice is

(2017), meaning that in turn the maximum size of an antichain in F is at most (2017). Thus, since

1008 1008
9 2017 _ 2018 <N,
1008 1009

li.e. the poset of all subsets of [2017] ordered by inclusion
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Dilworth guarantees the existence of a chain of length 3 in F. In other words, there exist Sp, 52, S3 in F such
that S; € S € S3. But now we have a contradiction: if |Sy \ S1| and |S3 \ S2| are both odd, then

[S3\ S1] =155\ Sa| + 152\ Si]

is even.

2018

1 009) elements. Take

It remains to construct an example of a family F with (
F ={8 C[2017] : |S| = 1008 or |S| = 1009}.

Note that this family has exactly (?853) elements. Furthermore, if S; C So for S; and Ss in F, then it must be

the case that S = S7 U {a} for some 1 < a <2017, and so |52 \ S1| = 1. Thus, we have a valid construction,
and so we are done.
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Computer Science Individual Finals Solutions

1. Consider a connected graph G with vertex set {0,1,2,...,6}. Suppose there exist 3 vertices of distance 1 away
from vertex 0, 2 vertices of distance 2 away from vertex 0, and 1 vertex of distance 3 away from vertex O.
How many such graphs satisfy this property?

Proposed by Cody Johnson

Solution. There are |
n!

ar! a2l .. - ay!

ways to choose which vertices are at each distance from vertex 0. Then, for each vertex at distance d away
from vertex 0 (1 < d < m), we need to choose some nonempty subset of the vertices of distance d — 1 to
connect them to. Therefore, if we let ag = 1, there are

(2% — )™ . (2% — 1)%2 . - (20t — 1)
Finally, we can connect vertices at the same distance together arbitrarily. There are

o(4) . o(?) . . o("5)

In total, there are thus
ML (20i-1 — 1)% 2(‘12’)

n!-
i=1 a;!

such graphs. Plugging in the numbers gives an answer of
6!(2 —1)3(23 —1)2(22 — 1)t232120
BT =|141120 |

2. Determine the largest number of steps for ged(k, 76) to terminate over all choices of 0 < k < 76, using the
following algorithm for ged. Give your answer in the form (n, k) where n is the maximal number of steps and
k is the k which achieves this. If multiple & work, submit the smallest one.
1: FUNCTION gcd(a, b):
2: IF ¢ =0 RETURN b
3: ELSE RETURN gcd(b mod a, a)

Proposed by Misha Ivkov and Gunmay Handa

Solution. We claim the answer is | (8,47)| Denote by ged(a,b) the number of steps needed for ged to

finish given two inputs a, b. First notice that ged(F,—1, F,) takes the most steps to finish over all ged(a, b)
for a < b < F,, (easy to show by induction). Hence ged(k,76) < ged(55,89) = 9 is our first upper bound.
Now we split into four cases.

e Case 1. If k < 34, then ged(k,76) = 1 + ged(76 mod k, k) < 1 + ged(21,34) = 8 (We note that
76 mod 34 = 21, so this is strict inequality).

e Case 2. If 34 < k < 38, then gecd(k,76) = 1 + ged(76 — 2k, k) < 1 + ged(34,55) = 9. Notice that
76—2k < 8, so ged(76—2k, k) < 14ged(5,8) = 5. Putting everything together again gives ged(k, 76) < 6,
as in case 1.

e Case 3. If 38 < k < 55, then ged(k,76) = 1+ ged(76 — k, k) < 1+ ged(34,55) = 9 and we have no way
of improving further.

e Case 4. If 55 < k, then ged(k, 76) = 1+ged(76 —k, k). Since 76 —k < 21, then ged(76 —k, k) = 1+ged(k
(mod 76 — k), 76 — k) < 1+ ged(13,21) =7, so ged(k, 76) < 8.
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Hence we simply analyze the numbers &k € (38, 55] which are relatively prime to 76 to get that 47 indeed gives
8 steps.

. For n € N, let z be the solution of 2* = n. Find the asymptotics of z, i.e., express x = ©(f(n)) for some
suitable explicit function of n.

Proposed by Cody Johnson

Solution. We claim

Inn
v=|® (lnlnn> i

Indeed, we claim that ; rllrllg‘n is a lower bound on z. Notice that
Inn — Inn Inn <2l |

— <z n zlnz =Inn
Inlnn Inlnn Inlnn

1

nn (Inlnn —Inlnlnn) <Inn

Inlnn
Innlnlnlnn
<~ Inn— — <lInn,

Inlnn

which is clearly true for any n > e®, so this is a lower bound. We also claim that 1?111?,7:1 is an upper bound on

x. Observe that

2Inn 2Inn 2Inn
< Inn=zxlnzx < n
Inlnn Inlnn Inlnn

21
= lnn< —" (In2lnn —Inlnlnn).

Inlnn

Since In2Inn > Inlnn we can write

1?111?17:1 (In2lnn —Inlnlnn) > 111221?:” (In2lnn —Inlnlnn)
2Inlnlnn
>2lnn—Inn- o
Inlnlnn
>Inn (2 ~ In2lnn )
> lnn,
for large enough values of n. Hence x is bounded on both sides by scalar multiples of hlrllr?n, as desired.



CMIMD 2018

Geometry Individual Finals Solutions

1. Let ABC be a triangle with AB =9, BC' = 10, CA = 11, and orthocenter H. Suppose point D is placed on
BC such that AH = HD. Compute AD.

Proposed by David Altizio
Solution. Let A’ be the reflection over BC. Then AAHD ~ AADA’ since both triangles are isosceles,
and so

AD? = AH - AA' = 2AH - d(A, BC) —9AB- ACcosA=2-9-11- - — 102,

33
whence AD = .

OR

Solution. Recall that four points A, B, C, and D satisfy AC L BD if and only if AD>—~CD? = AB?>—-CB?.
With this in mind, write

BH? — AH?> = BH? - DH? = BC?- AC? = AB? - AD?.

Rearranging thus yields

AD = VAB?+ AC? — BC? = /% + 112 — 102 = | V102 |

2. Suppose ABCD is a trapezoid with AB || CD and AB | BC. Let X be a point on segment AD such that
AD bisects ZBXC externally, and denote Y as the intersection of AC and BD. If AB = 10 and CD = 15,
compute the maximum possible value of XY

Proposed by Gunmay Handa
Solution. Let Z=CX N AB. Then XZ bisects ZBX Z from the definition of X, and so
BX Z7ZX XC BC AB 2

BA_ ZA CD ~ XC CD 3
Now let C’ denote the reflection of C over CA. Then B, X, and C' are collinear with % = % But note

that % = % as well, and so XY || DC’. In turn, when combined with C'D = CD = 15, we obtain

XY XB 2 2
D' OB 5 5 10=0
3. Let ABC be a triangle with incircle w and incenter I. The circle w is tangent to BC, CA, and AB at D, E,
and F' respectively. Point P is the foot of the angle bisector from A to BC, and point @ is the foot of the
altitude from D to E'F. Suppose AI =7, [P =5, and DQ = 4. Compute the radius of w.

Solution. We claim that in general
AP -r?
DQ=——
@ Al-IP’
/105

from which computation gives the answer as . There are many ways to prove this; we now present three

of them.

Solution 1: Invert about w, and denote inverses with a *. Recall that since AE and AF are tangents
to w, A* is the intersection point of AT = AP and F'F. In a similar vein, P* is the projection of D onto AP.
But now DQA*P* is a rectangle, and so

ey AP-1?
bQ=AP  AI-IP
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by the Inversion Distance Formula.

Solution 2: Let X denote the foot of the perpendicular from A to BC. Recall that EF and BC are
the polars of A and D respectively with respect to w, so by Salmon’s Theorem,

DQ  dist(D,EF) T

AX ~ dist(A,BC) IA’
In turn,
_AX-r AP r2

IA  AI-IP’

D@
where the last step uses APDI ~ APXA.

Solution 3: Let Al4Igl- denote the excentral triangle in the usual fashion. Recall that ADEF ~ Al Iglc
with similarity ratio r : 2R, as ®@(ABC) is the nine-point circle of ®(I4Iplc). Then

DQ_AIA-T_AB-AC-r_d(A,BC)~r_d(A,BC)-r2_AP~r2
2R 2R-AI Al - d(I,BC)-AI  IP-AI
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Number Theory Individual Finals Solutions

1. Alex has one-pound red bricks and two-pound blue bricks, and has 360 total pounds of brick. He observes
that it is impossible to rearrange the bricks into piles that all weigh three pounds, but he can put them in
piles that each weigh five pounds. Finally, when he tries to put them into piles that all have three bricks, he
has one left over. If Alex has r red bricks, find the number of values r could take on.

Proposed by Patrick Lin

Solution. Let b denote the number of blue bricks that Alex has. The first condition tells us that r+2b = 360.
In particular, r +2b = 0 (mod 3). The last condition tells us that 7 +b =1 (mod 3). Thus, b = 2 (mod 3)
and r = 2 (mod 3) also. The third condition informs us that the r + b bricks can be partitioned into 72 piles
that each weight 5 pounds. Since this cannot be done with only the two-pound bricks, there must be at least
one one-pound brick in each pile; that is, r > 72.

Now, the last condition informs us that b must be greater than 120. If there were fewer than 120 two-pound
blue bricks, then we could form 120 piles, each with at most one two-pound blue brick, and then use the rest
of the red one-pound bricks. Thus, b > 120 and since r + 2b = 360, r < 120.

Thus, the conditions on 7 are 72 < r < 120 and r = 2 (mod 3); it is not hard to calculate that there are
possible such values of r.

2. How many integer values of k, with 1 < k£ < 70, are such that 2F—1=0 (mod 71) has at least vk solutions?
Proposed by Andrew Kwon
Solution. We use the well-known fact that 2% — 1 =0 (mod p) has exactly d solutions when d | p — 1. Tt
is also evident that if d is coprime to p — 1, then there is only the trivial solution.

Now, any prime factors of k£ that do not divide p — 1 are irrelevant. In particular, the number of solutions to
#F—1 =0 (mod p) is exactly ged(k, p—1). Therefore, we need ged(k, p—1) > vk, and this can now be counted

manually by changing variables to d = ged(k,p — 1), k = d¢, where ¢ < min(d, pgl) and ged(¥, p%dl) =1

e For d =1,35,70 it is clear there is only one choice of ¢ and for d = 2, £ can be 1 or 2.
e For d = 5,7 there are 3 choices for ¢, which are {1,3,5} and {1, 3, 7} respectively.
e For d =10, ¢ can be any positive integer at most 6; for d = 14, ¢ can be any positive integer at most 4.

In total we find possible (d, £) pairs which correspond to the desired values of k.

3. Determine the number of integers a with 1 < a < 1007 and the property that both a and a + 1 are quadratic
residues mod 1009.

Proposed by Gunmay Handa

Solution. Let p = 1009 be a general prime congruent to 1 (mod 4) and (5) denote the Legendre symbol;
this is the value of the sum

() (0 (1) 22 () +

2

1p_2(a+1)+1§:<a2+a>
4=\ p 4 p

a=1 a a=1
p—2 1 1+1”‘2 a2\ [14a!
4 4 4 4a:1 P P
_p—4 ISR (b) _p—5
4 3 D 4

Thus our final answer is B =251



