
Algebra Individual Finals Solutions

1. For all real numbers r, denote by {r} the fractional part of r, i.e. the unique real number s ∈ [0, 1) such that
r − s is an integer. How many real numbers x ∈ [1, 2) satisfy the equation

{
x2018

}
=
{
x2017

}
?

Proposed by David Altizio

Solution. The condition is equivalent to x2018 = x2017 +N for some integer N ≥ 0 (since x2018 ≥ x2017 due
to x ≥ 1). Note that the function f(x) := x2018 − x2017 is continuous and increasing in [1, 2), with f(1) = 0
and f(2) = 22017. Thus, for every N ∈ {0, . . . , 22017 − 1}, there exists exactly one xN ∈ [1, 2] for which

x2018N = x2017N +N . Thus the requested answer is 22017 .

2. Compute the sum of the digits of

2018∏
n=0

(
102·3

n

− 103
n

+ 1
)(

102·3
n

+ 103
n

+ 1
)
.

Proposed by Cody Johnson

Solution. Let an = 103
n

for notational convienence. Note that an+1 = a3n, so

2018∏
n=0

(a2n − an + 1)(a2n + an + 1) =

2018∏
n=0

a6n − 1

a2n − 1
=

∏2018
n=0 (a2n+1 − 1)∏2018
n=0 (a2n − 1)

=
a22019 − 1

a20 − 1
.

Now a20 − 1 = 99 and a22019 − 1 is just a number consisting of 2 · 32019 nines, and so the answer is 32019 .

3. Let a be a complex number, and set α, β, and γ to be the roots of the polynomial x3 − x2 + ax− 1. Suppose

(α3 + 1)(β3 + 1)(γ3 + 1) = 2018.

Compute the product of all possible values of a.

Proposed by Keerthana Gurushankar and David Altizio

Solution. Let ω be a primitive sixth root of unity, so that ω3 = −1 and ω2 − ω + 1 = 0. Note that the
product on the LHS becomes

−
∏
cyc

(α+ 1)(α− ω)(α− ω̄) = −p(−1)p(ω)p(ω̄).

It is not hard to compute p(−1) = −3− a. Moreover, note that

p(ω) = ω3 − (ω2 + 1) + aω = −1 + ω(a− 1),

and similarly p(ω̄) = −1 + ω̄(a− 1). As a result,

p(ω)p(ω̄) = (−1 + ω(a− 1))(−1 + ω̄(a− 1)) = 1− (a− 1) + (a− 1)2 = a2 − 3a+ 3.

So the given equation becomes
(a+ 3)(a2 − 3a+ 3) = 2018

and the product of the roots is 2018− 9 = 2009 .



Combinatorics Individual Finals Solutions

1. How many nonnegative integers with at most 40 digits consisting of entirely zeroes and ones are divisible by
11?

Proposed by David Altizio

Solution. Let ω := exp(2πi/11), and consider the function

f(z) := (1 + z)(1 + z10)(1 + z10
2

) . . . (1 + z10
39

)

Using a roots of unity filter, we seek

1

11

[
f(1) + f(ω) + f(ω2) + · · ·+ f(ω10)

]
Note that

f(ωk) = (1 + ωk)20(1 + ω−k)20 = ω−20k(1 + ωk)40 =

40∑
j=0

(
40

j

)
ω−20k+jk =

20∑
j=−20

(
40

j + 20

)
ωjk

Thus, the answer is

1

11

10∑
k=0

20∑
j=−20

(
40

j + 20

)
ωjk =

20∑
j=−20

[(
40

j + 20

) 10∑
k=0

1

11
ωjk

]
= 2

(
40

9

)
+

(
40

20

)
.

2. John has a standard four-sided die. Each roll, he gains points equal to the value of the roll multiplied by the
number of times he has now rolled that number; for example, if he first rolls were 3, 3, 2, 3, he would have
3 + 6 + 2 + 9 = 20 points. Find the expected number of points he’ll have after rolling the die 25 times.

Proposed by Patrick Lin

Solution. For general n, suppose instead that the multiplier is always decreased by one; we look at the
number of times we’ve previously rolled a number. Then in total, the number of points we get from rolling
4’s is equal to 4 times the number of pairs of rolls such that both rolls in the pair came out to be 4. In
this scenario, the expected number of points would then just be

(
n
2

)
· 14 ·

5
2 , since each pair has a 1

4 chance to
contribute (in expectancy) 5

2 points.

Now, when we add one to every multiplier this just increases the expected number of points by 5
2n, so the

answer is 5
8

(
n
2

)
+ 5

2n = 5
2n
(
1 + n−1

8

)
. Substituting n = 25 yields an answer of 250 .

3. Let F be a family of subsets of {1, 2, . . . , 2017} with the following property: if S1 and S2 are two elements of
F with S1 ( S2, then |S2 \ S1| is odd. Compute the largest number of subsets F may contain.

Proposed by David Altizio

Solution. We claim the answer is
(
2018
1009

)
.

First, we show that |F| ≥
(
2018
1009

)
+ 1 = 2

(
2017
1008

)
+ 1 is impossible. Assume for the sake of contradiction there

exists such a family F with at least that many elements, and set N = |F|. Consider the poset (F ,⊆) of
all subsets in F ordered by inclusion. Note that F is a subset of 2[2017], meaning that the poset P can be
embedded into the Boolean lattice B20171. By Sperner, the maximum size of an antichain in this lattice is(
2017
1008

)
, meaning that in turn the maximum size of an antichain in F is at most

(
2017
1008

)
. Thus, since

2

(
2017

1008

)
=

(
2018

1009

)
< N,

1i.e. the poset of all subsets of [2017] ordered by inclusion



Dilworth guarantees the existence of a chain of length 3 in F . In other words, there exist S1, S2, S3 in F such
that S1 ( S2 ( S3. But now we have a contradiction: if |S2 \ S1| and |S3 \ S2| are both odd, then

|S3 \ S1| = |S3 \ S2|+ |S2 \ S1|

is even.

It remains to construct an example of a family F with
(
2018
1009

)
elements. Take

F = {S ⊆ [2017] : |S| = 1008 or |S| = 1009}.

Note that this family has exactly
(
2018
1009

)
elements. Furthermore, if S1 ( S2 for S1 and S2 in F , then it must be

the case that S2 = S1 ∪ {a} for some 1 ≤ a ≤ 2017, and so |S2 \ S1| = 1. Thus, we have a valid construction,
and so we are done.



Computer Science Individual Finals Solutions

1. Consider a connected graph G with vertex set {0, 1, 2, ..., 6}. Suppose there exist 3 vertices of distance 1 away
from vertex 0, 2 vertices of distance 2 away from vertex 0, and 1 vertex of distance 3 away from vertex 0.
How many such graphs satisfy this property?

Proposed by Cody Johnson

Solution. There are
n!

a1! · a2! · ... · am!

ways to choose which vertices are at each distance from vertex 0. Then, for each vertex at distance d away
from vertex 0 (1 ≤ d ≤ m), we need to choose some nonempty subset of the vertices of distance d − 1 to
connect them to. Therefore, if we let a0 = 1, there are

(2a0 − 1)a1 · (2a1 − 1)a2 · ... · (2am−1 − 1)am

Finally, we can connect vertices at the same distance together arbitrarily. There are

2(a1
2 ) · 2(a2

2 ) · ... · 2(am
2 )

In total, there are thus

n! ·
m∏
i=1

(2ai−1 − 1)ai · 2(ai
2 )

ai!

such graphs. Plugging in the numbers gives an answer of

6!(2− 1)3(23 − 1)2(22 − 1)1232120

3!2!1!
= 141120 .

2. Determine the largest number of steps for gcd(k, 76) to terminate over all choices of 0 < k < 76, using the
following algorithm for gcd. Give your answer in the form (n, k) where n is the maximal number of steps and
k is the k which achieves this. If multiple k work, submit the smallest one.

1: FUNCTION gcd(a, b):
2: IF a = 0 RETURN b
3: ELSE RETURN gcd(b mod a, a)

Proposed by Misha Ivkov and Gunmay Handa

Solution. We claim the answer is (8, 47) . Denote by gcd(a, b) the number of steps needed for gcd to

finish given two inputs a, b. First notice that gcd(Fn−1, Fn) takes the most steps to finish over all gcd(a, b)
for a < b < Fn (easy to show by induction). Hence gcd(k, 76) < gcd(55, 89) = 9 is our first upper bound.
Now we split into four cases.

• Case 1. If k ≤ 34, then gcd(k, 76) = 1 + gcd(76 mod k, k) < 1 + gcd(21, 34) = 8 (We note that
76 mod 34 6= 21, so this is strict inequality).

• Case 2. If 34 < k ≤ 38, then gcd(k, 76) = 1 + gcd(76 − 2k, k) < 1 + gcd(34, 55) = 9. Notice that
76−2k < 8, so gcd(76−2k, k) < 1+gcd(5, 8) = 5. Putting everything together again gives gcd(k, 76) < 6,
as in case 1.

• Case 3. If 38 < k ≤ 55, then gcd(k, 76) = 1 + gcd(76− k, k) < 1 + gcd(34, 55) = 9 and we have no way
of improving further.

• Case 4. If 55 < k, then gcd(k, 76) = 1+gcd(76−k, k). Since 76−k < 21, then gcd(76−k, k) = 1+gcd(k
(mod 76− k), 76− k) < 1 + gcd(13, 21) = 7, so gcd(k, 76) < 8.



Hence we simply analyze the numbers k ∈ (38, 55] which are relatively prime to 76 to get that 47 indeed gives
8 steps.

3. For n ∈ N, let x be the solution of xx = n. Find the asymptotics of x, i.e., express x = Θ(f(n)) for some
suitable explicit function of n.

Proposed by Cody Johnson

Solution. We claim

x = Θ

(
lnn

ln lnn

)
.

Indeed, we claim that lnn
ln lnn is a lower bound on x. Notice that

lnn

ln lnn
< x ⇐⇒ lnn

ln lnn
ln

(
lnn

ln lnn

)
< x lnx = lnn

⇐⇒ lnn

ln lnn
(ln lnn− ln ln lnn) < lnn

⇐⇒ lnn− lnn ln ln lnn

ln lnn
< lnn,

which is clearly true for any n > ee, so this is a lower bound. We also claim that 2 lnn
ln lnn is an upper bound on

x. Observe that

x <
2 lnn

ln lnn
⇐⇒ lnn = x lnx <

2 lnn

ln lnn
ln

(
2 lnn

ln lnn

)
⇐⇒ lnn <

2 lnn

ln lnn
(ln 2 lnn− ln ln lnn) .

Since ln 2 lnn > ln lnn we can write

2 lnn

ln lnn
(ln 2 lnn− ln ln lnn) >

2 lnn

ln 2 lnn
(ln 2 lnn− ln ln lnn)

> 2 lnn− lnn · 2 ln ln lnn

ln 2 lnn

> lnn

(
2− ln ln lnn

ln 2 lnn

)
> lnn,

for large enough values of n. Hence x is bounded on both sides by scalar multiples of lnn
ln lnn , as desired.



Geometry Individual Finals Solutions

1. Let ABC be a triangle with AB = 9, BC = 10, CA = 11, and orthocenter H. Suppose point D is placed on
BC such that AH = HD. Compute AD.

Proposed by David Altizio

Solution. Let A′ be the reflection over BC. Then 4AHD ∼ 4ADA′ since both triangles are isosceles,
and so

AD2 = AH ·AA′ = 2AH · d(A,BC) = 2AB ·AC cosA = 2 · 9 · 11 · 17

33
= 102,

whence AD =
√

102 .

OR

Solution. Recall that four points A, B, C, and D satisfy AC ⊥ BD if and only if AD2−CD2 = AB2−CB2.
With this in mind, write

BH2 −AH2 = BH2 −DH2 ⇒ BC2 −AC2 = AB2 −AD2.

Rearranging thus yields

AD =
√
AB2 +AC2 −BC2 =

√
92 + 112 − 102 =

√
102 .

2. Suppose ABCD is a trapezoid with AB ‖ CD and AB ⊥ BC. Let X be a point on segment AD such that
AD bisects ∠BXC externally, and denote Y as the intersection of AC and BD. If AB = 10 and CD = 15,
compute the maximum possible value of XY .

Proposed by Gunmay Handa

Solution. Let Z = CX ∩AB. Then XZ bisects ∠BXZ from the definition of X, and so

BX

BA
=
ZX

ZA
=
XC

CD
⇒ BC

XC
=
AB

CD
=

2

3
.

Now let C ′ denote the reflection of C over CA. Then B, X, and C ′ are collinear with BX
XC′ = 2

3 . But note

that BY
YD = 2

3 as well, and so XY ‖ DC ′. In turn, when combined with C ′D = CD = 15, we obtain

XY

DC ′
=
XB

C ′B
=

2

5
⇒ XY =

2

5
· 15 = 6.

3. Let ABC be a triangle with incircle ω and incenter I. The circle ω is tangent to BC, CA, and AB at D, E,
and F respectively. Point P is the foot of the angle bisector from A to BC, and point Q is the foot of the
altitude from D to EF . Suppose AI = 7, IP = 5, and DQ = 4. Compute the radius of ω.

Solution. We claim that in general

DQ =
AP · r2

AI · IP
,

from which computation gives the answer as
√
105
3 . There are many ways to prove this; we now present three

of them.

Solution 1: Invert about ω, and denote inverses with a ∗. Recall that since AE and AF are tangents
to ω, A∗ is the intersection point of AI ≡ AP and EF . In a similar vein, P ∗ is the projection of D onto AP .
But now DQA∗P ∗ is a rectangle, and so

DQ = A∗P ∗ =
AP · r2

AI · IP



by the Inversion Distance Formula.

Solution 2: Let X denote the foot of the perpendicular from A to BC. Recall that EF and BC are
the polars of A and D respectively with respect to ω, so by Salmon’s Theorem,

DQ

AX
=

dist(D,EF )

dist(A,BC)
=

r

IA
.

In turn,

DQ =
AX · r
IA

=
AP · r2

AI · IP
,

where the last step uses 4PDI ∼ 4PXA.

Solution 3: Let4IAIBIC denote the excentral triangle in the usual fashion. Recall that4DEF ∼ 4IAIBIC
with similarity ratio r : 2R, as �(ABC) is the nine-point circle of �(IAIBIC). Then

DQ =
AIA · r

2R
=
AB ·AC · r

2R ·AI
=
d(A,BC) · r

AI
=
d(A,BC) · r2

d(I,BC) ·AI
=
AP · r2

IP ·AI
.



Number Theory Individual Finals Solutions

1. Alex has one-pound red bricks and two-pound blue bricks, and has 360 total pounds of brick. He observes
that it is impossible to rearrange the bricks into piles that all weigh three pounds, but he can put them in
piles that each weigh five pounds. Finally, when he tries to put them into piles that all have three bricks, he
has one left over. If Alex has r red bricks, find the number of values r could take on.

Proposed by Patrick Lin

Solution. Let b denote the number of blue bricks that Alex has. The first condition tells us that r+2b = 360.
In particular, r + 2b ≡ 0 (mod 3). The last condition tells us that r + b ≡ 1 (mod 3). Thus, b ≡ 2 (mod 3)
and r ≡ 2 (mod 3) also. The third condition informs us that the r + b bricks can be partitioned into 72 piles
that each weight 5 pounds. Since this cannot be done with only the two-pound bricks, there must be at least
one one-pound brick in each pile; that is, r ≥ 72.

Now, the last condition informs us that b must be greater than 120. If there were fewer than 120 two-pound
blue bricks, then we could form 120 piles, each with at most one two-pound blue brick, and then use the rest
of the red one-pound bricks. Thus, b > 120 and since r + 2b = 360, r < 120.

Thus, the conditions on r are 72 ≤ r < 120 and r ≡ 2 (mod 3); it is not hard to calculate that there are 16
possible such values of r.

2. How many integer values of k, with 1 ≤ k ≤ 70, are such that xk − 1 ≡ 0 (mod 71) has at least
√
k solutions?

Proposed by Andrew Kwon

Solution. We use the well-known fact that xd − 1 ≡ 0 (mod p) has exactly d solutions when d | p− 1. It
is also evident that if d is coprime to p− 1, then there is only the trivial solution.

Now, any prime factors of k that do not divide p− 1 are irrelevant. In particular, the number of solutions to
xk−1 ≡ 0 (mod p) is exactly gcd(k, p−1). Therefore, we need gcd(k, p−1) ≥

√
k, and this can now be counted

manually by changing variables to d = gcd(k, p− 1), k = d`, where ` ≤ min(d, p−1d ) and gcd(`, p−1d ) = 1.

• For d = 1, 35, 70 it is clear there is only one choice of ` and for d = 2, ` can be 1 or 2.

• For d = 5, 7 there are 3 choices for `, which are {1, 3, 5} and {1, 3, 7} respectively.

• For d = 10, ` can be any positive integer at most 6; for d = 14, ` can be any positive integer at most 4.

In total we find 21 possible (d, `) pairs which correspond to the desired values of k.

3. Determine the number of integers a with 1 ≤ a ≤ 1007 and the property that both a and a+ 1 are quadratic
residues mod 1009.

Proposed by Gunmay Handa

Solution. Let p = 1009 be a general prime congruent to 1 (mod 4) and ( ·p ) denote the Legendre symbol;
this is the value of the sum

1

4

p−2∑
a=1

(
1 +

(
a

p

))(
1 +

(
a+ 1

p

))
=
p− 2

4
+

1

4

p−2∑
a=1

(
a

p

)
+

1

4

p−2∑
a=1

(
a+ 1

p

)
+

1

4

p−2∑
a=1

(
a2 + a

p

)

=
p− 2

4
− 1

4
− 1

4
+

1

4

p−2∑
a=1

(
a2

p

)(
1 + a−1

p

)

=
p− 4

4
+

1

4

p−2∑
b=2

(
b

p

)
=
p− 5

4
.

Thus our final answer is p−5
4 = 251 .


