
Computer Science Solutions Packet
1. Consider the following two vertex-weighted graphs, and denote them as having vertex sets V = {v1, v2, . . . , v6}

and W = {w1, w2, . . . , w6}, respectively (numbered in the same direction and way). The weights in the second
graph are such that for all 1 ≤ i ≤ 6, the weight of wi is the sum of the weights of the neighbors of vi. Determine
the sum of the weights of the original graph.

v1

v2

v3

v4

v5

v6

17

19

17

7

15

13

Proposed by Misha Ivkov

Solution. This is the system of equations

v5 + v6 = 17 (1)

v3 + v4 + v6 = 19 (2)

v2 + v4 + v5 = 17 (3)

v2 + v3 = 7 (4)

v1 + v3 + v6 = 15 (5)

v1 + v2 + v5 = 13 (6)

Adding either (2) and (6) or (3) and (5) gives 32

2. Consider the natural implementation of computing Fibonacci numbers:

1: FUNCTION FIB(n):
2: IF n = 0 OR n = 1 RETURN 1
3: RETURN FIB(n− 1) + FIB(n− 2)

When FIB(10) is evaluated, how many recursive calls to FIB occur?

Proposed by Patrick Lin

Solution. Let f(n) be the number of calls to fib during fib(n). Then

f(n) = 2 + f(n− 1) + f(n− 2)

with initial conditions f(0) = 0 and f(1) = 0. We can easily compute the recursion to get f(10) = 176 .



3. You are given the existence of an unsorted sequence a1, . . . , a5 of five distinct real numbers. The Erdos-
Szekeres theorem states that there exists a subsequence of length 3 which is either strictly increasing or
strictly decreasing. You do not have access to the ai, but you do have an oracle which, when given two
indexes 1 ≤ i < j ≤ 5, will tell you whether ai < aj or ai > aj . What is the minimum number of calls to the
oracle needed in order to identify one such requested subsequence?

Proposed by David Altizio

Solution. We claim the answer is 4 . It is easy to see that three does not work; one can consider all
possible sets of calls and for each one construct an ordering of the ai which prevents determining a desired
sequence. Now we exhibit a sequence of four calls which works. First call the oracle on (2,3), (3,4), and (2,4).
This allows us to determine a total ordering of the numbers a2, a3, a4. We now case on which one of these is
the median. If it’s a3, (2,3,4) works. Otherwise, WLOG a3 < a2 < a4. Now call (1,2). Then if a1 < a2, then
(1,2,4) works; if a1 > a2, then (1,2,3) works. We are done.

4. Consider the grid of numbers shown below.

20 01 96 56 16

37 48 38 64 60

96 97 42 20 98

35 64 96 40 71

50 58 90 16 89

Among all paths that start on the top row, move only left, right, and down, and end on the bottom row, what
is the minimum sum of their entries?

Proposed by Cody Johnson

Solution. Notice that the path traversing down the fourth column has sum 196 , and it is not hard to see
that there are no answers which are less than this.

Remark. In general, such a problem can be solved pretty efficiently by a Dynamic Programming algorithm.

5. An access pattern π is a permutation of {1, 2, . . . , 50} describing the order in which some n memory addresses
are accessed. We define the locality of π to be how much the program jumps around the memory, or numerically,

n∑
i=2

|π(i)− π(i− 1)| .

If π is a uniformly randomly chosen access pattern, what’s the expected value of its locality?

Proposed by Cody Johnson

Solution. Let E denote the expected value of |π(i) − π(i − 1)|. Then by linearity of expectation and
symmetry, our answer is (n − 1)E. Consider writing the numbers from 1 to n out. Then there are n + 1
gaps between them. Since the places that two bars can be placed are independent and selected at random,

the expected value of the size of the gap is n+1
3 . Then the answer is n2−1

3 . Here the desired quantity is
502−1

3 = 833 .

6. We define Wn,p to be the complete weighted undirected random graph with vertex set {1, 2, . . . , n}: the
edge (i, j) will have weight min(i, j) with probability p and weight max(i, j) otherwise. Let Ln,p denote the
total weight of the minimum spanning tree of Wn,p. Find the largest integer less than the expected value of
L2018,1/2.

Proposed by Misha Ivkov

Solution. We prove that

E[Ln,1/2] = 2n− 3 +
1

2n−1



(where E denotes expected value) from which the answer follows.
Note that E[L2,1/2] = 3

2 , which is true. Assume this statement is true for n. We show it follows for n + 1.
To do this, construct the MSP for the first n vertices. Adding an edge to the n+ 1st vertex will preserve the
MSP structure, so E[Ln+1,1/2] = E[Ln,1/2] +E[s] where s is the weight of the edge to the n+ 1st vertex. This
quantity is

E[s] =
n+ 1

2n
+

n∑
i=1

i

2i
= 2− 1

2n

Then

E[Ln+1,1/2] = 2n− 1 +
1

2n

and we are done, so the answer is 2 ∗ 2018− 3 = 4033 .

7. I give you a function rand that returns a number chosen uniformly at random from [0, T ] for some number
T that you don’t know. Your task is to approximate T . You do this by calling rand 100 times, recording the
results as X1, X2, ..., X100, and guessing

T̂ = α ·max{X1, X2, ..., X100}

for some α. Which value of α ensures that E[T̂ ] = T?

Proposed by Cody Johnson

Solution. Lets calculate E[T̂ ] when α = 1. We have

E[T̂ ] =

∫ T

0

Pr[T̂ > x] dx

=

∫ T

0

(1− Pr[T̂ ≤ x]) dx

=

∫ T

0

(1− Pr[X1 ≤ x ∧X2 ≤ x ∧ ... ∧X100 ≤ x]) dx

=

∫ T

0

(1− (x/T )100) dx

=
100

101
T

Therefore, the answer is α =
101

100
.

8. We consider a simple model for balanced parenthesis checking. Let R = {(()) → A, (A) → A, AA → A} be a
set of rules for phrase reduction. Then the phrase is balanced if and only if the model is able to reduce the
phrase to A by some arbitrary sequence of rule applications. For example, to show ((())) is balanced we can
do:

((()))→ (A)→ A X

Unfortunately, the above set of rules R is not complete; find the number of balanced parenthetical phrases of
length 14 for which R is insufficient to show that they are balanced.

Proposed by Misha Ivkov and Patrick Lin

Solution. Let f(n) be the number of phrases which can be shown to be balanced if the length is 2n, with
f(1) = 0 and let g(n) = f(n), except g(1) = 1. Then we claim

f(n) = f(n− 1) +

n−2∑
i=1

g(i)f(n− 1− i)



This can be shown term by term. f(n − 1) represents taking all phrases of length 2n − 2 and adding a
set of parens around them. For all the other terms, consider a phrase of length 2n as the combination of
(2k) ◦ 2(n − k − 1), with the first parentheses showing that it is indeed attainable. This is why g(1) = 1 is
required, so that the first term exists. The number of ways to create (2k) ◦ 2(n− k− 1) is g(k)f(n− k− 1), as
suggested by the formula. Hence we can compute f(7) = 37, and the total number of balanced parenthetical

phrases of length 14 is 1
8

(
14
7

)
so the answer is 1

8

(
14
7

)
− 37 = 392 .

9. Consider the following modified algorithm for binary search, which we will call weighted binary search:

01: FUNCTION SEARCH(L, value)
02: hi ← len(L) - 1
03: lo ← 0
04: WHILE hi ≥ lo
05: guess ← bw · lo + (1− w) · hic
06: mid ← L[guess]
07: IF mid > value
08: hi ← guess - 1
09: ELSE IF mid < value
10: lo ← guess + 1
11: ELSE
12: RETURN guess
13: RETURN -1 (not found)

Assume L is a list of the integers {1, 2, . . . , 100}, in that order. Further assume that accessing the kth index of
L costs k + 1 tokens (e.g. L[0] costs 1 token). Let S be the set of all w ∈ [0.5, 1) which minimize the average
cost when value is an integer selected at random in the range [1, 50]. Given that S =

(
x, 7499

]
, determine x.

Proposed by Misha Ivkov

Solution. Notice that all optimal values will have the property that bwa + (1 − w)bc = b 74a+25b
99 c. This

can be rewritten as

bw(a− b)c =

⌊
74

99
(a− b)

⌋
We know that not all (a, b) are possible as a result of running weighted binary search. Notice that 74−1 ≡ 95
(mod 99), and 74 ∗ (99 − 4n) ≡ n (mod 99). This means that the largest 99 − 4n or a multiple thereof to
appear as b − a will give a lower bound on w (this value will dictate when the floor goes from one value to
another). Consider the following steps:

(0, 99)→ (26, 99)→ (45, 99)

Here, 27 | b− a. We can further check that no bigger values can appear. Hence to finish we just need to find
y such that w = y

27 . Notice that b 7499 (−54)c = −41, so we want y such that b−2yc = −40, implying y = 20.

Then the answer is x = w = 20
27 .

10. Consider a graph G with vertex set {v1, v2, . . . , v6}. Starting at the vertex v1, an ant uses a DFS algorithm
to traverse through G, under the condition that if there are multiple unvisited neighbors of some vertex, the
ant chooses the vi with smallest i. How many possible graphs G are there satisfying the following property:
for each 1 ≤ i ≤ 6, the vertex vi is the ith new vertex the ant traverses?

Proposed by David Altizio

Solution. To solve this problem, it is first important to recall what depth-first search (DFS) is. In a DFS
algorithm, the ant will traverse through the vertices of a graph one at a time, travelling as far as possible
before backtracking. This is done subject to the condition that the ant finishes searching a vertex if and only
if all of that vertex’s neighbors are already visited. The following example, taken from the 15-210 Parallel
and Sequential Algorithms course textbook, might serve as a good visual aid (although here the DFS is



being done on an ordered graph as opposed to an unordered one). Here, X denotes the set of visited vertices
ordered from left to right.

Note that the bolded part of the graph indicating the exact edges traversed in the DFS search forms a tree;
this makes sense, since such an algorithm never visits a vertex twice (which in turn would create a cycle).
The key to solving this problem is to focus on this underlying tree (called a DFS tree) and use this to develop
a recursion that will help enumerate the number of graphs in question.

Consider any graph G on n + 1 vertices {v1, . . . , vn+1} satisfying the property in the question. Delete the
vertex vn+1 and all edges incident on it. Then the resulting graph G′ on n vertices {v1, . . . , vn} also satisfies
the property in question, since the DFS traversal for G must go through the vertices v1, . . . , vn first before
finally reaching vn+1. Now let P denote the unique path connecting vertex v1 to vertex vn in the DFS tree for
G′. The crucial claim is that all of the neighbors of vn+1 must be entirely contained in P . Indeed, if this were
not the case, then {vj , vn+1} ∈ E(G) for some vj /∈ P . Note that by the property in the problem statement,
in the DFS tree for G′, vj is traversed before vn. But now this means that in the DFS tree for G, vertex vn+1

is traversed before vn, since by definition the ant must visit all neighbors of vj before backtracking onto P .
This is a contradiction, and so indeed all neighbors of vn+1 must be located on the path P . In turn, one can
construct a graph on n + 1 vertices by first picking a vertex v in P for the ant to travel to vn+1 and then
selecting any subset of the vertices in the path from v1 to v not containing v in the DFS tree to add as extra
neighbors to vn+1. (These will not affect the correctness of the DFS tree due to the given ordering of the
vertices, since the vertex vn+1 will still be traversed last.)

The second important step is to recongize that the number of choices for where to place the branching-off
point is dependent on the length of P . Thus, for all positive integer pairs (n, k) with 1 ≤ k ≤ n− 1, let Gn,k

denote the number of connected graphs on {v1, . . . , vn} satisfying the following two properties:

• The DFS search starting from vertex v1 traverses v1, v2, . . . , vn in this order;

• In the DFS tree for the graph, the distance between vertices v1 and vn is k.

Additionally, define Gn,0 = 0 for convienence purposes. Then in order to construct a graph counted in
Gn+1,k+1, the vertex vn+1 must be attached to the vertex in the path from v1 to vn which is distance k away
from v1; this can only be done if the length of the path is at least k. Thus, by combining this with the logic
above, one establishes the recursion

Gn+1,k+1 = 2k
n∑

j=k

Gn,j .



Figure 1: Adding the vertex vn+1 to the graph. Here the DFS tree is represented in bold. The remaining dashed
edges are optional and lead to the 2k term in the recurrence.

v1

vn

v

vn+1

From here, it sufficees to compute the Gn,k manually. The computation is a bit intensive when performing
the calculations for the n = 6 case, but it is still doable.

Gn,k 0 1 2 3 4 5
1 0
2 0 1
3 0 1 2
4 0 3 6 8
5 0 17 34 56 64
6 0 171 342 616 960 1024

The requested answer is the sum of the entries along the bottom row, which is 3113 .

Remark: The sequence of answers for various n - 1, 1, 3, 17, 171, 3113, 106419, ... - is sequence A015083
in the OEIS. No closed form is known, but it is known that the generating function A(x) for this recurrence
satisfies the equation

A(x) =
1

1− xA(2x)
.

In this way, the sequence can be interpreted as a generalization of the Catalan number recurrence.


