
Algebra Solutions Packet
1. Misha has accepted a job in the mines and will produce one ore each day. At the market, he is able to buy or

sell one ore for $3, buy or sell bundles of three wheat for $12 each, or sell one wheat for one ore. His ultimate
goal is to build a city, which requires three ore and two wheat. How many dollars must Misha begin with in
order to build a city after three days of working?

Proposed by Patrick Lin

Solution. Suppose Misha begins with k dollars; after three days of working he will have k + 9 dollars
(without loss of generality he sells his ore). The cheapest way to get three ore and two wheat is to purchase
three wheat, trade one for an ore, then purchase two more ore; this costs 12 + 3 + 3 = 18 dollars, and so the
minimal k is 9 .

2. Suppose x > 1 is a real number such that x+ 1
x =
√

22. What is x2 − 1
x2 ?

Proposed by David Altizio

Solution. Note that(
x+

1

x

)2

−
(
x− 1

x

)2

= x2 + 2 +
1

x2
−
(
x2 − 2 +

1

x2

)
= 4.

Thus x− 1
x =

√
(
√

22)2 − 4 = 3
√

2. It follows that

x2 − 1

x2
=

(
x− 1

x

)(
x+

1

x

)
= 6
√

11 .

Alternatively, it is not terribly difficult to compute x = 1
2 (
√

22 +
√

18) and then perform the necessary
arithmetic to arrive at the value of x2 − 1

x2 .

3. Let P (x) = x2 + 4x+ 1. What is the product of all real solutions to the equation P (P (x)) = 0?

Proposed by David Altizio

Solution. Let t be a real solution to P (P (x)) = 0. Note that P (P (t)) = 0 implies that P (t) is a root of
the polynomial P . These roots can be computed to be −2 ±

√
3 by any method of your choice, so t must

satisfy either t2 + 4t + 1 = −2 +
√

3 or t2 + 4t + 1 = −2 −
√

3; these are equivalent to t2 + 4t + 3 −
√

3 = 0
and t2 + 4t + 3 +

√
3 = 0 respectively. Now it is easy to see that the minus solution has no real roots (since

3 +
√

3 > 4), while the plus solution has two real roots with product 3−
√

3 .

4. 2018 little ducklings numbered 1 through 2018 are standing in a line, with each holding a slip of paper with
a nonnegative number on it; it is given that ducklings 1 and 2018 have the number zero. At some point,
ducklings 2 through 2017 change their number to equal the average of the numbers of the ducklings to their
left and right. Suppose the new numbers on the ducklings sum to 1000. What is the maximum possible sum
of the original numbers on all 2018 slips?

Proposed by David Altizio

Solution. Let n = 2018 for simplicity. Denote the numbers on the slips of paper as A1, A2, . . . , An, with
A1 = An = 0, and set S = A1 + · · ·+A2018. Now remark that after taking averages, the ducklings now have
the numbers

0,
A3

2
,
A2 +A4

2
, · · · , An−1 +An−3

2
,
An−2

2
, 0.

Each variable except for A2 and An−1 appears twice, and so the sum of the numbers now is

1000 =
A2

2
+A3 + · · ·+An−2 +

An−1
2

= S − A2 +An−1
2

.



Now since each of the Ai is nonnegative we have A2 + An−1 ≤ S, and so 1000 ≥ S − S
2 = S

2 , which yields

S ≤ 2000 . Equality holds when all of A3 through A2016 are zero.

5. Suppose a, b, and c are nonzero real numbers such that

bc+
1

a
= ca+

2

b
= ab+

7

c
=

1

a+ b+ c
.

Find a+ b+ c.

Proposed by David Altizio

Solution. Note that the system of equations rearranges to

abc+ 1 =
a

a+ b+ c
, abc+ 2 =

b

a+ b+ c
, abc+ 7 =

c

a+ b+ c
.

Now adding these together yields

3abc+ 10 =
a+ b+ c

a+ b+ c
= 1 ⇒ abc = −3.

Thus a
b = abc+1

abc+2 = 2 and b
c = abc+2

abc+7 = − 1
4 . This in turn implies a = 2b and c = −4b. Then bc + 1

a = 1
a+b+c

becomes

−4b2 +
1

2b
=

1

b+ 2b− 4b
= −1

b
⇒ b =

3
√

3

2
,

and so a+ b+ c = −
3√3
2 .

6. We call an . . . a2 the Fibonacci representation of a positive integer k if

k =

n∑
i=2

aiFi,

where ai ∈ {0, 1} for all i, an = 1, and Fi denotes the ith Fibonacci number (F0 = 0, F1 = 1, and Fi =
Fi−1 + Fi−2 for all i ≥ 2). This representation is said to be minimal if it has fewer 1s than any other
Fibonacci representation of k. Find the smallest positive integer that has eight ones in its minimal Fibonacci
representation.

Proposed by Darshan Chakrabarti

Solution. A Fibonacci representation is minimal if and only if it has no two consecutive ones: If there
were an i ≥ 1 such that ai+1 = ai = 1, choose the largest such i, so that ai+2 = 0. Replace ai+2 with 1 and
ai+1, ai with 0 to get a representation with strictly fewer ones, contradicting minimality. The other direction
follows by uniqueness of Zeckendorf decompositions.

Now let an . . . a1 be the minimal Fibonacci representation of the answer, so that an = 1 and ai := 0 for all
i > n.

There is no n − 1 > i ≥ 2 such that ai+1 = ai = 0: If there were, then choose the largest such i, so that
ai+2 = 1. Replace ai+2 with 0 and ai+1 with 1 to get a minimal Fibonacci representation of a strictly smaller
positive integer.

Thus, the answer is either . . . 10101 or . . . 01010. The latter is clearly larger, so the answer is

F2 + F4 + · · ·+ F16 =

8∑
k=1

F2k =

8∑
k=1

(F2k+1 − F2k−1) = F17 − F1 = 1597− 1 = 1596 .



7. Compute
2017∑
k=0

5 + cos
(
πk
1009

)
26 + 10 cos

(
πk
1009

) .
Proposed by Misha Ivkov

Solution. Let rk = 5 + eπik/1009. Then

5 + cos( πk
1009 )

26 + 10 cos( πk
1009 )

=
5 + cos( πk

1009 )

25 + 10 cos( πk
1009 ) + cos2( πk

1009 ) + sin2( πk
1009 )

=
5 + cos( πk

1009 )

(5 + cos( πk
1009 ))2 + sin2( πk

1009 )
= <

(
rk
|rk|2

)
= <

(
1

r̄k

)
.

Thus the desired sum is just the real part of the complex number sum

2017∑
k=0

1

r̄k
=

2017∑
k=0

1

r2018−k
=

2017∑
k=0

1

rk
.

To compute this, remark that the rk are the roots of the polynomial (z − 5)2018 = 1. Hence the desired sum
is the sum of the reciprocals of this polynomial, which by Vieta’s is

− [z2017]((z − 5)2018 − 1)

[z2018]((z − 5)2018 − 1)
=

2018 · 52017

52018 − 1
.

OR

Solution. Let P (x) = x2018 − 1, and let zk = e
2iπk
2018 correspond to the roots of this polynomial. Then the

sum is

2017∑
k=0

5 + cos
(
πk
1009

)
26 + 10 cos

(
πk
1009

) =

2017∑
k=0

5 +
zk+

1
zk

2

26 + 10
zk+

1
zk

2

=

2017∑
k=0

z2k + 10zk + 1

2(zk + 5)(5zk + 1)

=

2017∑
k=0

1

10
+

1

2

2017∑
k=0

1

zk + 5
− 1

50

2017∑
k=0

1

zk + 1
5

=
2018

10
− P ′(−5)

2P (−5)
+

P ′
(
− 1

5

)
50P

(
− 1

5

)
which, with some computation, yields the desired answer of 2018·52017

52018−1 .

8. Suppose P is a cubic polynomial satisfying P (0) = 3 and

(x3 − 2x+ 1− P (x))(2x3 − 5x2 + 4− P (x)) ≤ 0

for all x ∈ R. Determine all possible values of P (−1).

Proposed by David Altizio

Solution. Let Q(x) = x3 − 2x + 1 and R(x) = 2x3 − 5x2 + 4, so that the inequality in question becomes
(Q(x)− P (x))(R(x)− P (x)) ≤ 0. The crucial claim is that there exists t ∈ (0, 1) such that

P (x) ≡ tQ(x) + (1− t)R(x).

To prove this, we first remark that the graphs of Q(x) and R(x) intersect at three points. Indeed, R(x) = Q(x)
is equivalent to x3−5x2+2x+4 = 0; denote this polynomial by S(x). Now S(−1) = −3, S(0) = 4, S(2) = −4,



and S(10) = 524, and so indeed by IVT we conclude that S has three real roots. Now let r1, r2, and r3 be the
roots of S, so that Q(ri) = R(ri) = r0 for some r0 ∈ R. Then plugging x = ri into the given inequality yields

(r0 − P (ri))(r0 − P (ri)) = (r0 − P (ri))
2 ≤ 0,

and so by the Trivial Inequality we have P (ri) = Q(ri) = R(ri). As a result, for some c we have

P (x)−Q(x) = c(x− r1)(x− r2)(x− r3) = c(R(x)−Q(x)),

and so there exist constants α and β such that

P (x) = αQ(x) + βR(x)

with α+β = 1. It remains to check that α and β are positive, but this is easy: after all, the leading coefficient
of P must be strictly between the leading coefficients of Q and R, or else the inequality breaks as x→ ±∞.

The rest of the problem is easy. Plugging x = 0 yields

3 = t · 1 + (1− t) · 4 = 4− 3t;

this yields t = 1
3 . Thus

P (x) =
1

3
(x3 − 2x+ 1) +

2

3
(2x3 − 5x2 + 4)

and so P (−1) = 1
3 · 2 + 2

3 · (−3) = − 4
3 .

9. Suppose a0, a1, . . . , a2018 are integers such that

(x2 − 3x+ 1)1009 =

2018∑
k=0

akx
k

for all real numbers x. Compute the remainder when a20 + a21 + · · ·+ a22018 is divided by 2017.

Proposed by David Altizio

Solution. The key to solving this problem is to reason in terms of generating functions. Recall that for
any two polynomials

p(x) =

k∑
j=0

pjx
j and q(x) =

k∑
j=0

qjx
j

(where leading coefficients can be zero), their product is given by

p(x)q(x) =

2k∑
j=0

 ∑
a+b=j

paqb

xj .

In terms of this question, note that the polynomial (x2 − 3x+ 1)1009 is symmetric1, and so

a20 + a21 + · · ·+ a22018 = a0a2018 + a1a2017 + · · ·+ a2018a0.

This means that in fact the sum is the coefficient of x2018 in
[
(x2 − 3x+ 1)1009

]2
= (x2 − 3x+ 1)2018, which

in turn is equal to the constant coefficeint of (x + 1
x − 3)2018. But now the computation is simple, as FLT

dictates that

[x0]

(
x+

1

x
− 3

)2018

≡ [x0]

(
x2017 +

1

x2017
− 3

)(
x+

1

x
− 3

)
≡ 9 (mod 2017).

1This follows from the fact that the product of two symmetric polynomials is symmetric: recall that P is symmetric iff P (x) ≡
xdegPP ( 1

x
), and

(xdegPP ( 1
x

))(xdegQQ( 1
x

)) = xdegP+degQP ( 1
x

)Q( 1
x

).



10. Define a sequence of polynomials Fn(x) by F0(x) = 0, F1(x) = x− 1, and for n ≥ 1,

Fn+1(x) = 2xFn(x)− Fn−1(x) + 2F1(x).

For each n, Fn(x) can be written in the form

Fn(x) = cnP1(x)P2(x) · · ·Pg(n)(x)

where cn is a constant and P1(x), P2(x) · · · , Pg(n)(x) are non-constant polynomials with integer coefficients
and g(n) is as large as possible. For all 2 < n < 101, let t be the minimum possible value of g(n) in the above
expression; for how many k in the specified range is g(k) = t?

Proposed by Gunmay Handa

Solution. Firstly, define Tn(x) = Fn(x) + 1; evidently these polynomials satisfy the recurrence Tn+1(x) =
2xTn(x)− Tn−1(x). It is not hard to see that Tn(x) = cos(n arccosx) over a suitable interval of convergence.

Lemma 1. For n ≥ 1,

(x− 1)[T2n+1(x)− 1] = [Tn+1(x)− Tn(x)]2 and 2(x− 1)(x+ 1)[T2n(x)− 1] = [Tn+1(x)− Tn−1(x)]2.

Proof. This is a direct induction using the recurrence.

Lemma 2. If m | n, then Fm(x) | Fn(x).

Proof. Note that Fk(x) has roots where Tk(x) = 1, or x = cos( 2πt
k ) for t = 0 through t = k−1. Consequently,

if m|n, then the roots of Fm(x) are a subset of the roots of Fn(x), implying the conclusion.

Lemma 3. If p is an odd prime, then g(p) = 3.

Proof. By examining the roots of Fp(x), we see that every root is repeated except for x = 1; therefore,
Fp(x) = (x− 1)Gp(x)2 for some polynomial Gp. We now claim that Gp(x) is irreducible over Q[X]. To prove

this, first note that Tp(x) = (x+
√
x2−1)p+(x−

√
x2−1)p

2 directly from the characteristic polynomial. Substituting
x 7→ x+ 1 and taking (mod p) yields

Tp(x+ 1)− 1

x
≡

(x+ 1 +
√

(x+ 1)2 − 1)p + (x+ 1−
√

(x+ 1)2 − 1)p − 2

2x

≡ xp + 1p + xp + 1p − 2

2x
≡ xp−1 (mod p)

by the Frobenius endomorphism. Hence, taking the square root yields that all coefficients except that of x
p−1
2

are divisible by p. Now it suffices to check that p2 does not divide the constant term of this polynomial, or

lim
x→1

cos(p arccosx)− 1

x− 1
= lim
x→1

−p sin(p arccosx)√
1− x2

= p2

by two applications of L’Hopital’s rule. Hence, the constant term is ±p, which implies the conclusion by
Eisenstein’s criterion.

Now by Lemma 1, we know that g(2n) ≥ 4, so it suffices to only examine odds. Similarly by Lemma 1, we
have that g(2n+ 1) ≥ 3, and if 2n+ 1 is not prime, we simply apply Lemma 2 to conclude that the inequality

is strict. Hence, the desired count is simply the number of odd primes less than 100, which is 24 .

Remark. Lemma 3 is also a direct application of some basic field theory. First notice that the roots of Gp(x)
are of the form cos(2kπ/p) for 0 < k ≤ p−1

2 . Let p be an odd prime and consider the tower of field extensions

Q ⊆ Q[cos(2kπ/p)] ⊆ Q[e2ikπ/p].

Note that Q[e2ikπ/p] is of degree p − 1 over Q, as it precisely corresponds to the pth cyclotomic polynomial
Φp(x) = xp−1 + xp−2 · · · + x + 1. Moreover, from the formula cos(2kπ/p) = (e2ikπ/p + e−2ikπ/p)/2, we see
that the second field extension is of degree 2 over the first. Finally, by the Tower Law, we see that the roots
of Gp(x) are of degree p−1

2 and so the polynomial itself must be irreducible.


