
Team Solutions Packet
1. Find the integer n such that

n+
⌊√

n
⌋

+

⌊√√
n

⌋
= 2017.

Here, as usual, b·c denotes the floor function.

Proposed by Patrick Lin

Solution. Noting that 44 <
√

2017 < 45 and 6 <
√√

2017 < 7 gives us a lower bound on n of 2017−45−7 =
1965. Now remark that since b

√
1965c = b

√
1968c = 44, n = 1967 is achievable but n = 1968 is not, for an

answer of 1967 .

2. Suppose x, y, and z are nonzero complex numbers such that (x+y+z)(x2 +y2 +z2) = x3 +y3 +z3. Compute

(x+ y + z)

(
1

x
+

1

y
+

1

z

)
.

Proposed by David Altizio

Solution. Let S1 = x+ y + z, S2 = xy + yz + zx, and S3 = xyz. Note that x2 + y2 + z2 = S2
1 − 2S2 and

x3 + y3 + z3 = (x+ y + z)(x2 + y2 + z2 − xy − yz − zx) + 3xyz = S3
1 − 3S1S2 + 3S3.

Thus the condition becomes

S1(S2
1 − 2S2) = S3

1 − 3S1S2 + 3S3 =⇒ S1S2 = 3S3.

Hence (x+ y + z)(xy + yz + zx) = 3xyz, and so dividing both sides by xyz gives the desired answer of 3 .

3. Suppose Pat and Rick are playing a game in which they take turns writing numbers from {1, 2, . . . , 97} on a
blackboard. In each round, Pat writes a number, then Rick writes a number; Rick wins if the sum of all the
numbers written on the blackboard after n rounds is divisible by 100. Find the minimum positive value of n
for which Rick has a winning strategy.

Proposed by Andrew Kwon

Solution. Suppose that Rick has a winning strategy for some value of n and let Si denote the sum of the
numbers on the board modulo 100 after round i. At the end of the nth round, the sum of all the numbers
written on the board must be 0 (mod 100). Now, consider the state of the game at the end of the (n− 1)th

round. We claim that Sn?1 ≡ 2 (mod 100) in order for Rick to be guaranteed to achieve Sn?0 (mod 100). If
Sn?1 ≡ 2 (mod 100), then no matter what value k Pat chooses, Rick can write 98?k and win the game. On
the other hand, if Sn?1 ≡ ` (mod 100) where ` 6= 2 then Pat can choose

k =

{
1 if ` = 0, 1

100− ` otherwise,

and in these cases Rick cannot guarantee a win. Proceeding inductively, we find that Sn−i ≡ 2i (mod 100)
is necessary in order for Rick to win. Evidently S0 ≡ 0 (mod 100), and so S0 ≡ 2n ≡ 0 (mod 100). The

minimal n satisfying this is n = 50 .

4. Say a positive integer n > 1 is twinning if p−2 | n for every prime p | n. Find the number of twinning integers
less than 250.

Proposed by Andrew Kwon

Solution. We case on the largest prime factor q of n, noting that n cannot be divisible by 2. We must have
q < 17, as 17 · 15 = 255, while q = 13 is also impossible because this implies that n is divisible by 13 · 11 · 9.



• q = 11: We have 11 · 9 | n, while no other prime factors are possible, so n = 99 is one possibility in this
case.

• q = 7: Again, 7 · 5 · 3 | n, and again no other prime factors are possible, so n = 105 is one possibility in
this case.

• q = 5: We must have 5·3 | n, while n can only contain factors of 5 and 3. We find 5·3, 52·3, 5·32, 52·32, 5·33
are all twinning, so there are 5 possibilities in this case.

• q = 3: The powers of 3, namely 3, 9, 27, 81, 243 are all twinning.

We conclude there are 12 twinning numbers less than 250.

5. We have four registers, R1, R2, R3, R4, such that Ri initially contains the number i for 1 ≤ i ≤ 4. We are
allowed two operations:

• Simultaneously swap the contents of R1 and R3 as well as R2 and R4.

• Simultaneously transfer the contents of R2 to R3, the contents of R3 to R4, and the contents of R4 to
R2. (For example if we do this once then (R1, R2, R3, R4) = (1, 4, 2, 3).)

Using these two operations as many times as desired and in whatever order, what is the total number of
possible outcomes?

Proposed by Cody Johnson

Solution. We’re looking for the number of distinct permutations generated by the two permutations π1 :=
(1 7→ 3, 2 7→ 4, 3 7→ 1, 4 7→ 2) and π2 := (1 7→ 1, 2 7→ 4, 3 7→ 2, 4 7→ 3). Note that each of these two
permutations are even, so we can only generate even permutations from them. Therefore, we can generate at
most 4!/2 = 12 permutations. Furthermore, we can generate the following 12 permutations, so the answer is

12 :

(1, 2, 3, 4) (1, 4, 2, 3) (1, 3, 4, 2) (4, 2, 1, 3)
(4, 3, 2, 1) (4, 1, 3, 2) (3, 2, 4, 1) (3, 1, 2, 4)
(3, 4, 1, 2) (2, 4, 3, 1) (2, 1, 4, 3) (2, 3, 1, 4)

6. George is taking a ten-question true-false exam, where the answer key has been selected uniformly at random;
however, he doesn’t know any of the answers! Luckily, a friend has helpfully hinted that no two consecutive
questions have true as the correct answer. If George takes the exam and maximizes the expected number of
questions he gets correct, how many of his answers are expected to be right?

Proposed by Patrick Lin

Solution. We claim George’s strategy is to answer false on every question; by linearity of expectation it
suffices to show that the answer to each question will be false with probability greater than 1/2. Let D be
any assignment of answers satisfying the problem conditions, i.e. no two consecutive answers are T (here, T
is true and F is false), and consider the k-th answer, for some k. If it is T , then we can always change it to
F and still have a valid assignment; if it is F , however, there exist assignments where we cannot change it to
T , which is when an adjacent answer is already T . Hence there are more assignments where the k-th answer
is F than T , and so the probability that some answer is F is greater than 1/2.

Now it remains to determine the expected number of F ’s that appear in a randomly chosen assignment of
answers with no consecutive T ’s. Note that if an assignment begins with a T the next answer must be an F
and otherwise if it begins with F the next answer is unrestricted, and so by straightforward recursion there
are Fn+2 possible assignments to n questions, where F is the Fibonacci sequence. Let tn be the total number
of T ’s over all assignments to n questions, so t0 = 0 and t1 = 1. By a similar argument, we have the recursion

tn = tn−1 + (tn−2 + Fn),

since there are tn−1 total T ’s that appear among all assignments to n questions that begin with F , and
tn−2 + Fn total that appear among those that begin with a T , as there are tn−2 total T ’s in the n − 2



questions at the end and Fn at the front, one per assignment. This yields t10 = 420 and F12 = 144, so the
expected number of T ’s is 420

144 = 35
12 .

The answer is hence 10− 35
12 = 85

12 .

7. Define {pn}∞n=0 ⊂ N and {qn}∞n=0 ⊂ N to be sequences of natural numbers as follows:

• p0 = q0 = 1;

• For all n ∈ N, qn is the smallest natural number such that there exists a natural number pn with
gcd(pn, qn) = 1 satisfying

pn−1
qn−1

<
pn
qn

<
√

2.

Find q3.

Proposed by David Altizio

Solution. Shift the sequence down by 1, so that p0 = 0 and the upper bound in question is
√

2 − 1; this
makes the arithmetic a little bit easier. It is not hard to see that p1/q1 = 1/3 and p2/q2 = 2/5 are the first
two terms of this sequence; the difficult part lies in extending this further.

Write p3 = (2q3 + r3)/5, where 0 < q3 < 5. The condition that p3/q3 <
√

2− 1 is equivalent to(
p3 + q3
q3

)2

< 2 =⇒ q23 > p23 + 2p3q3.

Making the substitution yields

q23 >

(
2q3 + r3

5

)2

+ 2

(
2q3 + r3

5

)
q3

=
24

25
q23 +

14

25
q3r3 +

1

25
r23

=⇒ q23 > 14q3r3 + r23.

Note that we necessarily need q3 > 14, since otherwise the RHS will be strictly bigger. In addition, in order
to minimize q3, we need r3 = 1. The smallest integer such that this is the case is q3 = 17. Indeed, we find
that this works with p3 = 7, so our answer is 17 .

8. Alice and Bob have a fair coin with sides labeled C and M , and they flip the coin repeatedly while recording
the outcomes; for example, if they flip two C’s then an M , they have CCM recorded. They play the following
game: Alice chooses a four-character string A, then Bob chooses two distinct three-character strings B1 and
B2 such that neither is a substring of A. Bob wins if A shows up in the running record before either B1 or B2
do, and otherwise Alice wins. Given that Alice chooses A = CMMC and Bob plays optimally, compute the
probability that Bob wins.

Proposed by Patrick Lin

Solution. (Sketch) Bob chooses B1, B2 = CCC,MMM , which gives him a winning probability of 21
80 .

Solution. First we give an intuitive explanation that B1,B2 = CCC,MMM . Observe that an ideal pair
(B1,B2) satisfies the qualities that

• almost satisfying one string before “falling off” leads to a suffix that is still fairly far from completing
the other string,

• “falling off” from completing A = CMMC will, in most cases, lead to a suffix that is also fairly far from
B1 or B2.



Considering these two criteria makes CCC and MMM a clear guess, especially since it is difficult to “confuse”
one string for another as the coins are flipped (as an aside, the second-best pair is to choose CCC and MCC).
Once we have B1 and B2, we can construct a Markov chain as shown below, where each arrow is taken with
probability 1

2 .

ε

c

m

cc

cm

mm mmm

cmm

ccc

cmmc

Identifying C as the probability that Bob wins given that we are in state C and that CCC = MMM = 0
and CMMC = 1, we have the system of equations

CMM =
1

2
(1)

CM =
1

2
CMM +

1

2
C (2)

MM =
1

2
C (3)

CC =
1

2
CM (4)

M =
1

2
C +

1

2
MM (5)

C =
1

2
CC +

1

2
CM. (6)

Substituting these equations from the top down yields C = 3
10 and M = 3

4C = 9
40 , and so the chance that

Bob wins is
1

2
C +

1

2
M =

21

80
.

9. Circles ω1 and ω2 are externally tangent to each other. Circle Ω is placed such that ω1 is internally tangent
to Ω at X while ω2 is internally tangent to Ω at Y . Line ` is tangent to ω1 at P and ω2 at Q and furthermore
intersects Ω at points A and B with AP < AQ. Suppose that AP = 2, PQ = 4, and QB = 3. Compute the
length of line segment XY .

Proposed by David Altizio

Solution. First, recall by homothety that M = XP ∩ Y Q is the midpoint of minor arc ÂB. This means
that

∠XPA =
ÂX + M̂B

2
=
ÂX + M̂A

2
= ∠XYQ,

whence XPQY is a cyclic quadrilateral. Now M is the radical center of ω1, ω2, and �(XPQY ), so in
particular if T = ω1 ∩ ω2, then MT is the common internal tangent of the two circles.

Set r = MA = MB, and define D = MT ∩ AB. Note that a bit of angle chasing yields 4MAP ∼ 4MXA,
so

MA2 = MP ·MX = MT 2 =⇒ MT = r.
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X

Y
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T

M

Thus DP = DQ = DT = 2 and MD = r − 2. Now Stewart’s Theorem on 4MAB with cevian MD gives us
the value of r directly, by

4 · 5 · 9 + 9(r − 2)2 = 4r2 + 5r2 =⇒ r = 6.

Finally, if we let x = MP and y = MQ now, we have PX = AP ·PB
PM = 14

x , and similarly QY = AQ·QB
MQ = 18

y .
Thus

x

(
x+

14

x

)
= y

(
y +

18

y

)
= r2 = 36,

so x =
√

22 and y =
√

18 and XY = 4
xMY = 24√

11
.

Remark. An alternate way to prove the geometric results listed above is through inversion. As before, let
r = MA = MB. The inversion at M with radius r swaps line AB and Ω, hence fixing ω1 and ω2 and thus
swapping X 7→ P and Y 7→ Q. This means that MXP , MYQ collinear with r2 = MP ·MX = MQ ·MY ,
and so XPQY is a cyclic quadrilateral. In particular M is the radical center of ω1, ω2, and �(XPQY ), so if
T = ω1 ∩ ω2, then MT = r.

10. The polynomial P (x) = x3 − 6x − 2 has three real roots, α, β, and γ. Depending on the assignment of the
roots, there exist two different quadratics Q such that the graph of y = Q(x) pass through the points (α, β),
(β, γ), and (γ, α). What is the larger of the two values of Q(1)?

Proposed by David Altizio

Solution. Let Q(x) = ax2 + bx+ c for some real numbers a, b, and c, so that
aα2 + bα+ c = β,

aβ2 + bβ + c = γ,

aγ2 + bγ + c = α.

The main idea is to manipulate the equations in such a way that various instances of Vieta’s Formulas can
be used to give a system of equations.



As a preliminary, compute α + β + γ = 0, αβ + βγ + γα = −6, αβγ = 2, α2 + β2 + γ2 = 12, and
α3 + β3 + γ3 = 3αβγ = 6. Note that adding the three equations together yields

a(α2 + β2 + γ2) + b(α+ β + γ) + 3c = α+ β + γ =⇒ c = −4a.

Multiplying the first equation by α, the second equation by β, and the third equation by γ and adding yields

a(α3 + β3 + γ3) + b(α2 + β2 + γ2) + c(α+ β + γ) = αβ + βγ + γα =⇒ a+ 2b = −1.

Getting the third equation is a bit tougher. Note that multiplying the first equation by β, the second equation
by γ, and the third by α and adding yields

a(α2β+β2γ+ γ2α) + b(αβ+βγ+ γα) + c(β+ γ+α) = β2 + γ2 +α2 =⇒ a(α2β+β2γ+ γ2α)− 6b = 12.

Similarly, multiplying the first equation by βγ, the second by γα, and the third by αβ and adding gives

a(α2βγ+αβ2γ+αβγ2) + 3bαβγ+ c(βγ+ γα+αβ) = β2γ+ γ2α+α2β =⇒ 6b− 6c = α2β+β2γ+ γ2α.

Hence substitution yields
a(6b− 6c)− 6b = 12,

or a(b− c)− b = 2.

As a result, the manipulations above lead to the system of equations
c = −4a,

a+ 2b = −1,

a(b− c)− b = 2.

Multiplying the third equation by 2 and substituting for a from the first and second equations yields

2a(b− c)− 2b = a(−1− a+ 8a)− (−1− a) = 7a2 + 1 = 4,

so a = ±
√

3
7 = ±

√
21
7 . Finally, remark that

2(a+ b+ c) = a+ (a+ 2b) + 2c = a− 1− 8a = −7a− 1 = ∓
√

21− 1,

so the requested answer is
√
21−1
2 .


