CMINMD 2017

Power Round

INSTRUCTIONS

. Do not look at the test before the proctor starts the round.

. This test consists of several problems, some of which are short-answer and some of which
require proofs, to be solved within a time frame of 60 minutes. There are 150 points total.

. Answers should be written and clearly labeled on sheets of blank paper. Each numbered
problem should be on its own sheet. If you have multiple pages, number them as well (e.g.
1/3,2/3).

. Write your team ID on the upper-right corner and the problem and page number of the
problem whose solution you are writing on the upper-left corner on each page you submit.
Papers missing these will not be graded. Problems with more than one submission will not
be graded.

. Write legibly. Illegible handwriting will not be graded.

. In your solution for any given problem, you may assume the results of previous problems,
even if you have not solved them. You may not do the same for later problems.

. Problems are not ordered by difficulty. They are ordered by progression of content.
. No computational aids other than pencil/pen are permitted.

. If you believe that the test contains an error, submit your protest in writing to Doherty Hall
2302 prior to the end of lunch.



CMIMD 2017

1 Introduction

Randomness is a phenomenon present in all areas of mathematics and science, for it allows us to
model very complex systems in a way that is rather well-tamed by mathematicians. The CMIMC
2017 Power Round aims to explore how randomness can be used as a powerful tool in algorithms.

2 Random Variables

A random wvariable is a variable that takes a given value with a certain probability. The set of all
possible values a given random variable can take is called its sample space; how often it takes a
given value depends on its probability distribution. We will only deal with discrete sample spaces
and distributions. For instance, here are the two major distributions we will look at:

e Discrete uniform distribution: We say X ~ Discrete Uniform(N) if X takes the values
{1,2,..., N} with equal probabilities.

e Bernoully distribution: We say a random variable X has the Bernoulli distribution — denoted
X ~ Bernoulli(p) — if X takes the value 1 with probability p and 0 with probability 1 — p.

o Geometric distribution: Let X be the random variable corresponding to the number of samples
from Bernoulli(p) until we get a 1. Then X ~ Geometric(p).

A very important point to note is the difference between random variables and random numbers:
random variables describe an entire distribution and have no numerical value, whereas random
numbers are the numerical result of sampling from a distribution. For instance, the random variable
corresponding to a coin toss describes all the possible outcomes and their respective probabilities;
however, flipping the coin once and observing it to be heads corresponds to a random number.

Definition 2.1. We call two random variables X and Y independent — denoted X 1 Y — if
Pr((X =a)N (Y =b)] =Pr[X =a| - Pr[Y =]
for all a, b.
We will now look at a very useful statistic in describing the distributions of random variables.

Definition 2.2. Suppose X can take the values X7, Xs,.... The ezpected value of a random variable
X, denoted by E(X), is defined to be

E[X] =X, -Pr[X = X;]+ Xo - Pr[X = X,] +....

1. [6] Suppose X ~ Geometric(p). Prove that E[X] = %.

Page 2



CMIMD 2017

We have ]
EX]=p-1+(1-p)-(1+E[X]) = E[X] =2

Alternate Solution. The probability we see a 1 for the first time on toss i is p-(1—p)*~L.

Thus,

E[X] = Zi-p- (1-p)!

For any 0 < o < 1, we can compute S := Z;’il i - o' since

— S—S:Zi-a’ 1—2@ a
o i=1 i=1
:Z(2+1)-O/—Z@ o'
=0 =1
= 1 «
= t— e S =
;a l-—a (1 —«)?
Finally, we obtain that
p 1—-p) 1

.

Here are four very important properties of the expected value:

e E[c- X]=c-E[X] and E[c+ X| = ¢+ E[X], where c is a constant.
e E[X Y] =E[X] - E[Y],if X LY.

e (Linearity of expectation) E[X + Y| = E[X]| + E[Y].

2. [8] Prove these four properties.

Let p; := Pr[X = X;] and ¢; := Pr[Y =Y]].

o E[c- X]=>,(c- X;)-pi=c- (D Xi-pi) = c- E[X].
e Ec+X]=>(c+X,) pi=c-Y,pi+)>,Xi-pi=c+E[X].

e E[X Y] :Zi,j(Xi'Yj)‘Pr[X:XimYZYj] :Zi,in'Yj'pi'qJ = (22 X
pi) - (22, Y5 4;) = E[X]- E[Y].

e E[X +Y] :Zi,j(Xl-—l—Y})~Pr[X:XiﬂY:Y}] :Ziszi~Pr[X:XiﬂY:
YJ’]"‘ijz’Y}'Pr[X:XiﬂYZY}] :Zz‘Xi'pi"‘ZjY}'qJ:E[X]""E[Y]-

Page 3



CMIMD 2017

3. [4] Suppose X ~ Bernoulli(0.75) and Y ~ Discrete Uniform(6) are independent random
variables. Define X’ and Y’ to be random variables satisfying X' =6- X +4 and Y’ =3-Y +2.
What is E[ X' +Y’] and E[X"-Y']?

thmeEm1_0025+107&:§mmqu:1-g+$%+ 46 Thus
EX'|=E[6-X+4] =6 -E[X ]+4— and EY'|=E[3-Y +2]=3- E[Y]—|—2—25
We have E[X' +Y'] = E[X'] + E[Y'] = ¥ + 2 = 21, and since X’ L Y’, we know
E[X/ YI]_E[X] E[ ]_17 25_45'

2 1

4. [7] Suppose we randomly distribute m > 1 balls into n > 1 initially empty bins, so that each
ball has an equal chance of being placed in each bin. What is the expected number of balls
in the first bin? What is the expected number of empty bins?

For 1 < i < m, let X; be the random variable that is 1 if ball ¢ lands in the first bin
and 0 otherwise. Note that E[X;] = Pr[ball i lands in the first bin] = 1. Then we seek
EXi+ - +Xn] =E[Xj]+-- - +EX,) =2+ -+ 1 =2
For 1 <17 < n, let Y; be the random variable that is 1 if bin ¢ is empty and 0 otherwise.
Note that E[Y;] = Pr[bin i is empty] = (1 — —) Then we seek E[Y] + --- + V,] =
EYi ]+ +EY,]=01-H"+ +(1-H"=n-1-21)"

3 Algorithms

An algorithm is a set of instructions for performing a task. For instance, the following two algorithms
determine if a nonnegative integer is odd or even:

Data: a nonnegative integer n Data: a nonnegative integer n
Result: whether n is odd or even Result: whether n is odd or even
while n > 0 do for 1 =0,2,4,6,... do
if n =0 then if n =i then
‘ return n is even ‘ return n s even
end end
else if n =1 then else if n =7+ 1 then
‘ return n s odd ‘ return n s odd
end end
else end
‘ n+<n—2
end
end

Page 4



CMIMD 2017

We will now detail a common convention in writing algorithms called pseudocode. It is not
required that you follow these conventions, but you must be able to clearly describe
the steps of your algorithms. There are only a few conventions that we need to introduce:

[variable name| < [value]
if [condition] then

else if [condition] then

else

while [condition] do

for [variable name] = [sequence| do

return [value]

assigns (or reassigns) [value] to [variable name]
perform the indented instruction if [condition]
is satisfied

perform the indented instruction if the previous
if condition isn’t satisfied but [condition] is satisfied
perform the indented instruction if none of the
previous if conditions are satisfied

iteratively perform the indented instruction as
long as [condition] is satisfied

iteratively perform the indented instruction for
each value of [variable name| in the sequence
the output of the algorithm

Algorithms generally require correctness — the algorithm always outputs the right answer — and
termination — the algorithm doesn’t run infinitely.

5. [4] Prove that the above two algorithms are correct and always terminate.

For the first algorithm, we decrease n at each step, so it must terminate since a nonnegative
integer cannot decrease infinitely. Also, n (mod 2) is preserved at each step, so once n € {0,1}
we know n is even iff n = 0 and n is odd iff n = 1.

For the second algorithm, n — ¢ decreases at each step, so it must terminate. Also, since ¢ is
even, once n € {i,i + 1} we will know n is even iff n =i and n is odd iff n =i + 1.

We will also introduce a way to generate random numbers.

Definition 3.1. Let the function B(p) return a random number X ~ Bernoulli(p), and let the
function D(NNV) return a random number X ~ Discrete Uniform(N).

With these two basic functions, we can simulate many complex probabilistic events. For example,
suppose we want to generate a random number X according to the following distribution:

value 0 1 2
Pr[X =value] 1/4 1/2 1/4

One algorithm that can simulate such a distribution is:

6. [2] Prove that this algorithm accurately returns a random number with the above distribution.

~

We have four equally-likely outcomes on the value of (u,v). If (u,v) = (0,0), then
u 4 v = 0, which occurs with probability 1/4. If (u,v) = (0,1) or (u,v) = (1,0), then
u+ v = 1, which occurs with probability 1/4 + 1/4 = 1/2. If (u,v) = (1,1), then
u 4 v = 2, which occurs with probability 1/4. This is the above distribution.

Page 5



CMIMD 2017

Data: none

Result: a random number with the above distribution
u <+ B(1/2)

v« B(1/2)

return v + v

7. [10] Let p be any real number in [0,1]. Using only calls to B(1/2), devise an algorithm that
terminates with probability 1 and returns a random number X ~ Bernoulli(p). Prove that
your algorithm is correct and terminates with probability 1. Partial credit of at most 4
points will be awarded for solving the case of p = 1/3.

For p = 1/3, we can use the following algorithm:
Data: none
Result: a random number X ~ Bernoulli(1/3)
while 0 = 0 do
u <+ B(1/2)
v« B(1/2)
if u+v =0 then
‘ return 1
end
else if u+v =1 then
‘ return 0
end

end
By Problem 6, we know the distribution of the random variable u + v. The probability
that this algorithm doesn’t return on a given step is 1/4, so the probability that it
doesn’t terminate after n steps is (1/4)" — 0 as n — oo. If it does terminate, then on
the last step there is a 1 : 2 probability of returning 1 versus returning 0, which is the
desired distribution.

Page 6



CMIMD 2017

For general p, let p = 0.b1b2bs ... be a binary representation of p. Our algorithm is:
Data: none
Result: a random number X ~ Bernoulli(p)
for k=1,2,3,... do
if O.cicy...cp < O.blbg . bk then
‘ return 1
end
if 0.cica...cp > 0.b1by ... b, then
‘ return 0
end
end

The probability it doesn’t terminate after n steps is (1/2)" — 0, the case where
(c1,€0, ... ¢n) = (b1,ba,...,b,). If it terminates in at most n steps, then it returns
1 for byby...b, values. There are 2" possible outcomes in total, so the probability of
this happening is

biby...b

n
o — pasn— oo
Now, the probability it returns 0 is

2" —biby... b, — 1
2n

—1—pasn— o

as desired.

Page 7




CMIMD 2017

And finally, we will discuss how to shuffle a deck of cards. Suppose we have N > 3 cards
C1,Cy, ..., Cy lined up in a row, and we want to shuffle the deck so that it is equally likely to see
any possible outcome. We have devised the following algorithm to perform this task:

Data: the cards C,C5,...,Cy
Result: a uniformly random permutation of Cy,Cy,...,Cy
fori=1,2,...,N do
j + D(N)
swap the positions of C; and C}
end

8. [7] Prove that this algorithm is incorrect, i.e., it does not properly shuffle the cards.

Suppose the algorithm works. There are NV possible outcomes of this algorithm, all
equally likely, and there are N! possible permutations, so N! | N¥. Then

N—1|N!| NV,

but gcd(N — 1, N¥) = 1. Thus N — 1| 1, which is a contradiction.

9. [7] Fix the algorithm, and prove correctness.

Instead of choosing j uniformly at random from {1,2,..., N}, choose it uniformly at
random from {i,i + 1,..., N}. That is, replace the line j < D(N) with j < i —
1+ D(N + 1 — ). This algorithm is correct since there are N! possibilities, and we

can get any given permutation Co(1), Cy2),- - ., Oy if, at the ith iteration, we swap
Coiy € {C1,C, ..., CnIN{Co1); Co(2), - - -, Coi—1y} with the card at position i for all
1=1,2,...,N.

4 Randomized Algorithms

Finally we meet the significant subject: randomized algorithms. A randomized algorithm is an algo-
rithm that uses random variables. For instance, when the CMIMC staff plays chess, we determine
who plays as white by flipping a coin, which is a simulation of B(0.5). A deterministic algorithm is
an algorithm that always produces the same output when run on the same input. Note: this does
not mean all randomized algorithms are nondeterministic.

Let’s examine why randomized algorithms might be useful. We all know the game of battleship,
where each player places his ships, and then each player tries to guess the coordinates of the ships.
Well, the game of one-dimensional battleship involves the first player setting k of the numbers
A[l], A2], ..., A[4k] equal to 1 and the rest equal to 0. The second player’s goal is to guess some
index i for which A[i] = 1, and after each guess the first player reveals if it is correct or not.

Page 8



CMIMD 2017

(0fof1fofofof1[1fof1[ofofofofof0]

You are the second player in a game of one-dimensional battleship.

10. [2] Find, with proof, a deterministic algorithm for playing one-dimensional battleship that
requires at most 3k + 1 guesses.

Iteratively guess A[1], A[2],.... If A[l]=--- = A[3k] =0 fail then A[3k + 1] = 1.

11. [2] Suppose you play with a deterministic algorithm. Prove that there exists some configura-
tion by the first player for which you require at least 3k + 1 guesses.

All deterministic algorithms can be characterized by a fixed sequence of guesses o :

N — (1,2,...,4k), iteratively guessing A[o(1)], A[o(2)],.... Since there are 3k Os
among A[l],..., A[4k], there exists some configuration such that A[o(1)] = A[o(2)] =
- = Alo(3k)] = 0.

12. [6] Find, with proof, a randomized algorithm for playing one-dimensional battleship such that
the expected number of guesses your strategy requires is a constant independent of k. Your
algorithm does not necessarily need to terminate.

On the ith guess, let X; = D(4k) and guess A[X;]. Let Y; be the random variable
that is 1 if A[X;] = 1 and 0 otherwise, and let Z be the random variable corresponding
to the number of guesses in this strategy. Since Y; ~ Bernoulli(0.25), we have Z ~
Geometric(0.25), so E[Z] = 4 by Problem 1.

Sometimes, when we design an algorithm, instead of always outputting the right answer, we can
design an algorithm that will output the wrong answer with a very small probability.

Definition 4.1. A Las Vegas algorithm is an algorithm for which the expected run-time is small,
but it always outputs the right answer. A Monte Carlo algorithm is an algorithm for which the
worst-case run-time is small, but it errs with a small probability.

To demonstrate this idea, we will present a Monte Carlo algorithm to determine whether or not
a number is prime. But first, we will state without proof that there is a function IsComposite(n, a)
that takes n and a number a € {2,3,...,n — 1} with the following properties:

e If n is prime, then IsComposite(n, a) always returns false.

e If n is composite, then IsComposite(n,a) incorrectly returns false for less than half of the
numbers a € {2,3,...,n — 1}.

Page 9



CMIMD 2017

Data: a positive integer n
Result: whether or not n is prime
for:=1,2,...,100 do

a< 14+D(n—2)

if IsComposite(n, a) then

‘ return n is composite

end
end
return n s prime

Knowing this function, we can now describe this primality test algorithm:

13. [5] What is the probability this algorithm outputs “n is composite” when n is actually prime?
What is the probability that this algorithm outputs “n is prime” when n is actually composite?
How can we decrease these two probabilities?

If n is prime, IsComposite(n, a) always evaluates to false, so the algorithm never outputs
“n is composite” and hence the probability is 0. If n is composite, the algorithm outputs
“n is prime” with probability less than 271%°. To decrease this probability, change 100
to a larger number in the algorithm.

5 Sorting

The problem of sorting a list is a classical problem in any text on algorithms. Here we will present
two sorting algorithms, one deterministic and one randomized, and compare their efficiencies. Sort-
ing algorithms’ efficiencies are generally measured by the number of comparisons they make, i.e.,
the number of times we check if A[i] < Alj] for some 1, j.

Consider the following deterministic sorting algorithm:

Page 10



CMIMD 2017

Algorithm: Sorting Algorithm #1
Data: a list L = (L[1], L[2],..., L[n]) of integers
Result: L sorted in increasing order
fori=1,2,....,ndo
for j=7+1,...,ndo

if A[j] < A[i] then

| swap A[i] and A[j]

end

end

end

14. [4] Prove that this algorithm is correct and terminates.

It clearly terminates since there are a finite number of steps. At the end of the inner
for loop, L[] will have been replaced with min;<;<,, L[j]. Thus, after each iteration of
the outer for loop, we know that (L[1],..., L[7]) is a sorted list of the smallest elements
of L.

15. [2] Find the number of comparisons this algorithm always makes.

It makes one comparison for each pair of 1 < i < 57 < n. That is (’2‘) = @

comparisons.

The second algorithm uses a technique called recursion, which means it divides the problem into
sub-problems of the same type as the original problem, solves the sub-problems, and combines the
results. Remember, this is perfectly acceptable as long as we cover the base cases. So consider the
following randomized sorting algorithm:

Page 11



CMIMD 2017

Algorithm: Sorting Algorithm #2
Data: a list L = (L[1], L[2],..., L[n]) of integers
Result: L sorted in increasing order
if n=0,1 then
‘ return L
end
p < D(n) (L[p| is called a pivot in this case)
Ll, Lo+ 0
fori=12,....p—1,p+1,...,ndo
if L[i] < L[p| then
| add L[] to L,
end
else
| add L[i] to Ly
end

end
use this algorithm to sort Ly, Lo
return Ly, L{p|, L]

16. [6] Prove that this algorithm is correct and terminates.

Each time the algorithm is called, it is called on lists of sizes strictly less than that of
the previous call. Since n = 0,1 are covered, it will eventually terminate.

To prove correctness, note that in the end L; is a sorted list of elements of L that are
< Llp| and Ly is a sorted list of elements of L that are > L[p|, so [Ly, L[p]|, Ls] is L
sorted.

17. [8] Let C be a variable denoting the number of comparisons this algorithm makes, and suppose
the resulting sorted array is ¢; < fo < --- < {,,. Furthermore, let A;; denote the event that
this algorithm at some point compares ¢; and ¢;. Prove that

E[C]= Y Pr[4;].

1<i<j<n

Recall that A;; can happen at most once. Thus, let B;; be the random variable that is
1 if A;; occurs and 0 if A;; doesn’t occur. By linearity of expectation, we have

> By|= > EByj= ) Pr[4

1<i<j<n 1<i<j<n 1<i<j<n

E[C] = E

Page 12



CMIMD 2017

18. [6] Prove that A;; occurs if and only if the first pivot chosen from ¢;, ¢;11, ..., ¢; is either ¢; or
l;.

If either ¢; or ¢; is chosen as a pivot, then it is compared to all other elements among
Ui, liv, ..., 0;, so A;; occurs. If £} is chosen as a pivot before ¢; or ¢;, then they will be
broken up into different sets and thus never compared.

19. [6] Prove that Pr[A;;] = 2

Since each of ¢;,¢;11,...,¢; have an equal probability of being chosen first as a pivot,
the probability that ¢; or ¢; are chosen first is jj — - By Problem 18, this is Pr[A;].

20. [6] Let
1 1 1
H, =>4 =4 +=
1_*—2+ +n

denote the n'® harmonic number. Prove that E[C] = 2(n + 1)H,, — 4n.

By Problems 17 and 19, we have

"o 2
E[C]:sz:

i=1 j=i+1 i

n

.o

n—i+1
=2

Il
—

M=

=Y (2Hn-is1—2) =2
=1

i=1

Now we notice that
[+ 1)H; —i] — [iH;.1 — (i —1)] =4(H; — Hi_1) + H;— 1 = H;

so that .
Y Hi=(n+1)H,—n
i=1

21. [4] In the worst case, how many comparisons are made?

Page 13



CMIMD 2017

Suppose every time we choose the smallest element in the set. Then the algorithm is
identical to Sorting Algorithm #1, so there are ”(”2_1) comparisons made in the worst
case.

More formally, let W,, be the maximum number of comparisons on a list of size n. We
prove that W,, = @ by strong induction on n. Base cases are easy (in particular,
one can check that this holds for n = 0 and n = 1). For the inductive step, note that
after the initial n — 1 comparisons the list L is split into two lists of size k and n—1— k.
Thus

2—3n+2
Wpo=n—-1+ max (Wy+W,_14)=n—1+ max (k‘Q—nk—}—w)

0<k<n—1 0<k<n—1 2

n*—3n+2 n(n-—1)

=n-—1
n + 5 5

22. [8] Now you will compare the efficiencies of Sorting Algorithm #1 and Sorting Algorithm #2.
Let a,, be the answer to Problem 15. Prove that

2 NWH, —4
lim (n+ D H, n

n—oo a,n

=0.

Suppose 2% < n < 2¥1 We have
H—l-‘r 1-|—1 I 1+1+1+1 ol = 1+ —f-l
"1 \2 3 45 6 7T 2 n
1
1

2
T T [
22 47441 2k 2k

n—2F+1 n+1
—1414+1+-- +T:k_1+ T <k+1<log,n+1
Thus,
lim 2(n+1)(logyn + 1) —4n _ 0
n—00 n(n—l)/2

since the numerator grows with nlog, n and the denominator grows with n?.

6 Randomized Approximation Algorithms

Often, it is unreasonable to find the exact solution to a problem because maybe finding the exact
solution requires checking 2!%° different cases. Therefore, sometimes it suffices to develop an approz-
imation algorithm, which is an algorithm that simply finds a very good solution to a problem. For

Page 14



CMIMD 2017

example, we do not know any efficient algorithms (and none exist if P # NP!) to find an assignment
of boolean variables that satisfy a given set of boolean formulas; however, there is an approximation
an algorithm that can find an assignment satisfying an expected 87.5% of the formulas.

We will investigate the following problem: there are n people at a party, some of whom know
each other. A subset of these people is called a cover if, after we remove those people from the
party, no two distinct people at the party know one another. The problem is, given a list of who
knows who at the party, to find a cover of minimal size. The following approximation algorithm
determines a cover that is close to minimal size:

Page 15



CMIMD 2017

Data: a list L of pairs {u,v} of people who know each other
Result: a cover that is close to minimal size
S0
for {u,v} € L do
if u,v ¢ S then
randomly choose u or v with equal probability
add the chosen vertex to S
end

end
return S

23. [4] Prove that this algorithm indeed returns a cover.

Suppose u knows v, but u,v € S. Then this algorithm will have chosen at least one of
u, v will be chosen to be in S, contradiction. Thus S is a cover.

24. [8] Let C denote any cover of minimal size. Let S; denote the contents of S after completing
the 7th iteration of the loop. Prove that, for all 1 > 0,

E[lS;nC[] = E[[S\C])

We induct on ¢. For ¢« = 0, we have 0 > 0. For general i, if one of w,v is in S then
Sit1 = 5; so we're done. Otherwise, we know at least one of u,v belongs to C' as well.
Thus, the left-hand side has probability at least 1/2 of increasing by 1, whereas the
right-hand side has probability at most 1/2 of increasing by 1.

25. [6] Conclude that, after the algorithm terminates,
E[lS]<2-|C].

We have
E[S|] = E[S\C| + E[SN Cl] < 2-E[SNC] < 2-|C].

We have proven that this simple algorithm produces a cover that doesn’t deviate too far from
the minimal size of a cover.

Now consider the following variant of the original problem: for each person v at the party, we
assign a number 0 < w, < 1 that describes how much we want him to stay at the party, where 1
means we really want him to stay at the party, and 0.001 means we really want to kick him out
of the party. The number w, is called a weight. The problem is to find a cover of minimal total
weight. Notice that the original problem is the special case where all the weights are 1.

Page 16



CMIMD 2017

26. [8] For a set T, let

~ Y,

veT

We can modify the above algorithm by changing “randomly choose u or v with equal proba-
bility” to “randomly choose u with probability p,, and v with probability 1 — p,,.” Redefine
C to be any cover of minimal weight, instead of minimal size. Find, with proof, the value of

Puv that ensures that for all 7 > 0,
EW(S,NnC)| > E[W(S\C)]

Wy Wy

Let puy := 554 Then the left-hand side has probability at least _*«7e- of increasing
by 1, whereas the right-hand side has probability at most P of increasing by 1.

27. [4] Conclude that, after the algorithm terminates,

E[W(S)] < 2-W(C).

We have
EW(S)] =EW(S\C)|+EWSNC)]<2-EWISNC) <2-W(C)

Page 17




