
1. Do not look at the test before the proctor starts the round.

2. This test consists of several problems, some of which are short-answer and some of which
require proofs, to be solved within a time frame of 60 minutes. There are 150 points total.

3. Answers should be written and clearly labeled on sheets of blank paper. Each numbered
problem should be on its own sheet. If you have multiple pages, number them as well (e.g.
1/3, 2/3).

4. Write your team ID on the upper-right corner and the problem and page number of the
problem whose solution you are writing on the upper-left corner on each page you submit.
Papers missing these will not be graded. Problems with more than one submission will not
be graded.

5. Write legibly. Illegible handwriting will not be graded.

6. In your solution for any given problem, you may assume the results of previous problems,
even if you have not solved them. You may not do the same for later problems.

7. Problems are not ordered by difficulty. They are ordered by progression of content.

8. No computational aids other than pencil/pen are permitted.

9. If you believe that the test contains an error, submit your protest in writing to Doherty Hall
2302 prior to the end of lunch.

1 Introduction

Randomness is a phenomenon present in all areas of mathematics and science, for it allows us to
model very complex systems in a way that is rather well-tamed by mathematicians. The CMIMC
2017 Power Round aims to explore how randomness can be used as a powerful tool in algorithms.

2 Random Variables

A random variable is a variable that takes a given value with a certain probability. The set of all
possible values a given random variable can take is called its sample space; how often it takes a
given value depends on its probability distribution. We will only deal with discrete sample spaces
and distributions. For instance, here are the two major distributions we will look at:

• Discrete uniform distribution: We say X ∼ Discrete Uniform(N) if X takes the values
{1, 2, . . . , N} with equal probabilities.

• Bernoulli distribution: We say a random variable X has the Bernoulli distribution – denoted
X ∼ Bernoulli(p) – if X takes the value 1 with probability p and 0 with probability 1− p.

• Geometric distribution: Let X be the random variable corresponding to the number of samples
from Bernoulli(p) until we get a 1. Then X ∼ Geometric(p).

A very important point to note is the difference between random variables and random numbers:
random variables describe an entire distribution and have no numerical value, whereas random
numbers are the numerical result of sampling from a distribution. For instance, the random variable
corresponding to a coin toss describes all the possible outcomes and their respective probabilities;
however, flipping the coin once and observing it to be heads corresponds to a random number.

Definition 2.1. We call two random variables X and Y independent – denoted X ⊥ Y – if

Pr[(X = a) ∩ (Y = b)] = Pr[X = a] ·Pr[Y = b]

for all a, b.

We will now look at a very useful statistic in describing the distributions of random variables.

Definition 2.2. Suppose X can take the values X1, X2, The expected value of a random variable
X, denoted by E(X), is defined to be

E[X] = X1 ·Pr[X = X1] +X2 ·Pr[X = X2] +

1. [6] Suppose X ∼ Geometric(p). Prove that E[X] = 1
p
.

Page 2

We have

E[X] = p · 1 + (1− p) · (1 + E[X]) =⇒ E[X] =
1

p

Alternate Solution. The probability we see a 1 for the first time on toss i is p·(1−p)i−1.
Thus,

E[X] =
∞∑
i=1

i · p · (1− p)i−1

For any 0 < α < 1, we can compute S :=
∑∞

i=1 i · αi since

1

α
· S − S =

∞∑
i=1

i · αi−1 −
∞∑
i=1

i · αi

=
∞∑
i=0

(i+ 1) · αi −
∞∑
i=1

i · αi

=
∞∑
i=0

αi =
1

1− α
=⇒ S =

α

(1− α)2

Finally, we obtain that

E[X] =
p

1− p
· (1− p)

(1− (1− p))2
=

1

p

Here are four very important properties of the expected value:

• E[c ·X] = c · E[X] and E[c+X] = c+ E[X], where c is a constant.

• E[X · Y] = E[X] · E[Y], if X ⊥ Y .

• (Linearity of expectation) E[X + Y] = E[X] + E[Y].

2. [8] Prove these four properties.

Let pi := Pr[X = Xi] and qj := Pr[Y = Yj].

• E[c ·X] =
∑

i(c ·Xi) · pi = c · (
∑

iXi · pi) = c · E[X].

• E[c+X] =
∑

i(c+Xi) · pi = c ·
∑

i pi +
∑

iXi · pi = c+ E[X].

• E[X · Y] =
∑

i,j(Xi · Yj) · Pr[X = Xi ∩ Y = Yj] =
∑

i,j Xi · Yj · pi · qj = (
∑

iXi ·
pi) · (

∑
j Yj · qj) = E[X] · E[Y].

• E[X + Y] =
∑

i,j(Xi + Yj) ·Pr[X = Xi ∩ Y = Yj] =
∑

i

∑
j Xi ·Pr[X = Xi ∩ Y =

Yj] +
∑

j

∑
i Yj ·Pr[X = Xi ∩ Y = Yj] =

∑
iXi · pi +

∑
j Yj · qj = E[X] + E[Y].

Page 3

3. [4] Suppose X ∼ Bernoulli(0.75) and Y ∼ Discrete Uniform(6) are independent random
variables. Define X ′ and Y ′ to be random variables satisfying X ′ = 6 ·X+4 and Y ′ = 3 ·Y +2.
What is E[X ′ + Y ′] and E[X ′ · Y ′]?

We have E[X] = 0 · 0.25 + 1 · 0.75 = 3
4

and E[Y] = 1 · 1
6

+ 2 · 1
6

+ · · ·+ 6 · 1
6

= 7
2
. Thus

E[X ′] = E[6 ·X + 4] = 6 · E[X] + 4 = 17
2

and E[Y ′] = E[3 · Y + 2] = 3 · E[Y] + 2 = 25
2

.
We have E[X ′ + Y ′] = E[X ′] + E[Y ′] = 17

2
+ 25

2
= 21, and since X ′ ⊥ Y ′, we know

E[X ′ · Y ′] = E[X ′] · E[Y ′] = 17
2
· 25

2
= 425

4
.

4. [7] Suppose we randomly distribute m ≥ 1 balls into n ≥ 1 initially empty bins, so that each
ball has an equal chance of being placed in each bin. What is the expected number of balls
in the first bin? What is the expected number of empty bins?

For 1 ≤ i ≤ m, let Xi be the random variable that is 1 if ball i lands in the first bin
and 0 otherwise. Note that E[Xi] = Pr[ball i lands in the first bin] = 1

n
. Then we seek

E[X1 + · · ·+Xm] = E[X1] + · · ·+ E[Xm] = 1
n

+ · · ·+ 1
n

= m
n

.
For 1 ≤ i ≤ n, let Yi be the random variable that is 1 if bin i is empty and 0 otherwise.
Note that E[Yi] = Pr[bin i is empty] =

(
1− 1

n

)m
Then we seek E[Y1 + · · · + Yn] =

E[Y1] + · · ·+ E[Yn] =
(
1− 1

n

)m
+ · · ·+

(
1− 1

n

)m
= n ·

(
1− 1

n

)m
.

3 Algorithms

An algorithm is a set of instructions for performing a task. For instance, the following two algorithms
determine if a nonnegative integer is odd or even:

Data: a nonnegative integer n
Result: whether n is odd or even
while n ≥ 0 do

if n = 0 then
return n is even

end
else if n = 1 then

return n is odd
end
else

n← n− 2
end

end

Data: a nonnegative integer n
Result: whether n is odd or even
for i = 0, 2, 4, 6, . . . do

if n = i then
return n is even

end
else if n = i+ 1 then

return n is odd
end

end

Page 4

We will now detail a common convention in writing algorithms called pseudocode. It is not
required that you follow these conventions, but you must be able to clearly describe
the steps of your algorithms. There are only a few conventions that we need to introduce:

[variable name] ← [value] assigns (or reassigns) [value] to [variable name]
if [condition] then perform the indented instruction if [condition]

is satisfied
else if [condition] then perform the indented instruction if the previous

if condition isn’t satisfied but [condition] is satisfied
else perform the indented instruction if none of the

previous if conditions are satisfied
while [condition] do iteratively perform the indented instruction as

long as [condition] is satisfied
for [variable name] = [sequence] do iteratively perform the indented instruction for

each value of [variable name] in the sequence
return [value] the output of the algorithm

Algorithms generally require correctness – the algorithm always outputs the right answer – and
termination – the algorithm doesn’t run infinitely.

5. [4] Prove that the above two algorithms are correct and always terminate.

For the first algorithm, we decrease n at each step, so it must terminate since a nonnegative
integer cannot decrease infinitely. Also, n (mod 2) is preserved at each step, so once n ∈ {0, 1}
we know n is even iff n = 0 and n is odd iff n = 1.
For the second algorithm, n− i decreases at each step, so it must terminate. Also, since i is
even, once n ∈ {i, i+ 1} we will know n is even iff n = i and n is odd iff n = i+ 1.

We will also introduce a way to generate random numbers.

Definition 3.1. Let the function B(p) return a random number X ∼ Bernoulli(p), and let the
function D(N) return a random number X ∼ Discrete Uniform(N).

With these two basic functions, we can simulate many complex probabilistic events. For example,
suppose we want to generate a random number X according to the following distribution:

value 0 1 2
Pr[X = value] 1/4 1/2 1/4

One algorithm that can simulate such a distribution is:

6. [2] Prove that this algorithm accurately returns a random number with the above distribution.

We have four equally-likely outcomes on the value of (u, v). If (u, v) = (0, 0), then
u + v = 0, which occurs with probability 1/4. If (u, v) = (0, 1) or (u, v) = (1, 0), then
u + v = 1, which occurs with probability 1/4 + 1/4 = 1/2. If (u, v) = (1, 1), then
u+ v = 2, which occurs with probability 1/4. This is the above distribution.

Page 5

Data: none
Result: a random number with the above distribution
u← B(1/2)
v ← B(1/2)
return u+ v

7. [10] Let p be any real number in [0, 1]. Using only calls to B(1/2), devise an algorithm that
terminates with probability 1 and returns a random number X ∼ Bernoulli(p). Prove that
your algorithm is correct and terminates with probability 1. Partial credit of at most 4
points will be awarded for solving the case of p = 1/3.

For p = 1/3, we can use the following algorithm:

Data: none
Result: a random number X ∼ Bernoulli(1/3)
while 0 = 0 do

u← B(1/2)
v ← B(1/2)
if u+ v = 0 then

return 1
end
else if u+ v = 1 then

return 0
end

end

By Problem 6, we know the distribution of the random variable u+ v. The probability
that this algorithm doesn’t return on a given step is 1/4, so the probability that it
doesn’t terminate after n steps is (1/4)n → 0 as n→∞. If it does terminate, then on
the last step there is a 1 : 2 probability of returning 1 versus returning 0, which is the
desired distribution.

Page 6

For general p, let p = 0.b1b2b3 . . . be a binary representation of p. Our algorithm is:
Data: none
Result: a random number X ∼ Bernoulli(p)
for k = 1, 2, 3, . . . do

ck ← B(1/2)
if 0.c1c2 . . . ck < 0.b1b2 . . . bk then

return 1
end
if 0.c1c2 . . . ck > 0.b1b2 . . . bk then

return 0
end

end

The probability it doesn’t terminate after n steps is (1/2)n → 0, the case where
(c1, c2, . . . , cn) = (b1, b2, . . . , bn). If it terminates in at most n steps, then it returns
1 for b1b2 . . . bn values. There are 2n possible outcomes in total, so the probability of
this happening is

b1b2 . . . bn
2n

→ p as n→∞

Now, the probability it returns 0 is

2n − b1b2 . . . bn − 1

2n
→ 1− p as n→∞

as desired.

Page 7

And finally, we will discuss how to shuffle a deck of cards. Suppose we have N ≥ 3 cards
C1, C2, . . . , CN lined up in a row, and we want to shuffle the deck so that it is equally likely to see
any possible outcome. We have devised the following algorithm to perform this task:

Data: the cards C1, C2, . . . , CN
Result: a uniformly random permutation of C1, C2, . . . , CN
for i = 1, 2, . . . , N do

j ← D(N)
swap the positions of Ci and Cj

end

8. [7] Prove that this algorithm is incorrect, i.e., it does not properly shuffle the cards.

Suppose the algorithm works. There are NN possible outcomes of this algorithm, all
equally likely, and there are N ! possible permutations, so N ! | NN . Then

N − 1 | N ! | NN ,

but gcd(N − 1, NN) = 1. Thus N − 1 | 1, which is a contradiction.

9. [7] Fix the algorithm, and prove correctness.

Instead of choosing j uniformly at random from {1, 2, . . . , N}, choose it uniformly at
random from {i, i + 1, . . . , N}. That is, replace the line j ← D(N) with j ← i −
1 + D(N + 1 − i). This algorithm is correct since there are N ! possibilities, and we
can get any given permutation Cσ(1), Cσ(2), . . . , Cσ(N) if, at the ith iteration, we swap
Cσ(i) ∈ {C1, C2, . . . , CN}\{Cσ(1), Cσ(2), . . . , Cσ(i−1)} with the card at position i for all
i = 1, 2, . . . , N .

4 Randomized Algorithms

Finally we meet the significant subject: randomized algorithms. A randomized algorithm is an algo-
rithm that uses random variables. For instance, when the CMIMC staff plays chess, we determine
who plays as white by flipping a coin, which is a simulation of B(0.5). A deterministic algorithm is
an algorithm that always produces the same output when run on the same input. Note: this does
not mean all randomized algorithms are nondeterministic.

Let’s examine why randomized algorithms might be useful. We all know the game of battleship,
where each player places his ships, and then each player tries to guess the coordinates of the ships.
Well, the game of one-dimensional battleship involves the first player setting k of the numbers
A[1], A[2], . . . , A[4k] equal to 1 and the rest equal to 0. The second player’s goal is to guess some
index i for which A[i] = 1, and after each guess the first player reveals if it is correct or not.

Page 8

0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0

You are the second player in a game of one-dimensional battleship.

10. [2] Find, with proof, a deterministic algorithm for playing one-dimensional battleship that
requires at most 3k + 1 guesses.

Iteratively guess A[1], A[2], If A[1] = · · · = A[3k] = 0 fail then A[3k + 1] = 1.

11. [2] Suppose you play with a deterministic algorithm. Prove that there exists some configura-
tion by the first player for which you require at least 3k + 1 guesses.

All deterministic algorithms can be characterized by a fixed sequence of guesses σ :
N → (1, 2, . . . , 4k), iteratively guessing A[σ(1)], A[σ(2)], Since there are 3k 0s
among A[1], . . . , A[4k], there exists some configuration such that A[σ(1)] = A[σ(2)] =
· · · = A[σ(3k)] = 0.

12. [6] Find, with proof, a randomized algorithm for playing one-dimensional battleship such that
the expected number of guesses your strategy requires is a constant independent of k. Your
algorithm does not necessarily need to terminate.

On the ith guess, let Xi = D(4k) and guess A[Xi]. Let Yi be the random variable
that is 1 if A[Xi] = 1 and 0 otherwise, and let Z be the random variable corresponding
to the number of guesses in this strategy. Since Yi ∼ Bernoulli(0.25), we have Z ∼
Geometric(0.25), so E[Z] = 4 by Problem 1.

Sometimes, when we design an algorithm, instead of always outputting the right answer, we can
design an algorithm that will output the wrong answer with a very small probability.

Definition 4.1. A Las Vegas algorithm is an algorithm for which the expected run-time is small,
but it always outputs the right answer. A Monte Carlo algorithm is an algorithm for which the
worst-case run-time is small, but it errs with a small probability.

To demonstrate this idea, we will present a Monte Carlo algorithm to determine whether or not
a number is prime. But first, we will state without proof that there is a function IsComposite(n, a)
that takes n and a number a ∈ {2, 3, . . . , n− 1} with the following properties:

• If n is prime, then IsComposite(n, a) always returns false.

• If n is composite, then IsComposite(n, a) incorrectly returns false for less than half of the
numbers a ∈ {2, 3, . . . , n− 1}.

Page 9

Data: a positive integer n
Result: whether or not n is prime
for i = 1, 2, . . . , 100 do

a← 1 + D(n− 2)
if IsComposite(n, a) then

return n is composite
end

end
return n is prime

Knowing this function, we can now describe this primality test algorithm:

13. [5] What is the probability this algorithm outputs “n is composite” when n is actually prime?
What is the probability that this algorithm outputs “n is prime” when n is actually composite?
How can we decrease these two probabilities?

If n is prime, IsComposite(n, a) always evaluates to false, so the algorithm never outputs
“n is composite” and hence the probability is 0. If n is composite, the algorithm outputs
“n is prime” with probability less than 2−100. To decrease this probability, change 100
to a larger number in the algorithm.

5 Sorting

The problem of sorting a list is a classical problem in any text on algorithms. Here we will present
two sorting algorithms, one deterministic and one randomized, and compare their efficiencies. Sort-
ing algorithms’ efficiencies are generally measured by the number of comparisons they make, i.e.,
the number of times we check if A[i] < A[j] for some i, j.

Consider the following deterministic sorting algorithm:

Page 10

Algorithm: Sorting Algorithm #1

Data: a list L = (L[1], L[2], . . . , L[n]) of integers
Result: L sorted in increasing order
for i = 1, 2, . . . , n do

for j = i+ 1, . . . , n do
if A[j] < A[i] then

swap A[i] and A[j]
end

end

end

14. [4] Prove that this algorithm is correct and terminates.

It clearly terminates since there are a finite number of steps. At the end of the inner
for loop, L[i] will have been replaced with mini≤j≤n L[j]. Thus, after each iteration of
the outer for loop, we know that (L[1], . . . , L[i]) is a sorted list of the smallest elements
of L.

15. [2] Find the number of comparisons this algorithm always makes.

It makes one comparison for each pair of 1 ≤ i < j ≤ n. That is
(
n
2

)
= n(n−1)

2

comparisons.

The second algorithm uses a technique called recursion, which means it divides the problem into
sub-problems of the same type as the original problem, solves the sub-problems, and combines the
results. Remember, this is perfectly acceptable as long as we cover the base cases. So consider the
following randomized sorting algorithm:

Page 11

Algorithm: Sorting Algorithm #2

Data: a list L = (L[1], L[2], . . . , L[n]) of integers
Result: L sorted in increasing order
if n = 0, 1 then

return L
end
p← D(n) (L[p] is called a pivot in this case)
L1, L2 ← ∅
for i = 1, 2, . . . , p− 1, p+ 1, . . . , n do

if L[i] ≤ L[p] then
add L[i] to L1

end
else

add L[i] to L2

end

end
use this algorithm to sort L1, L2

return [L1, L[p], L2]

16. [6] Prove that this algorithm is correct and terminates.

Each time the algorithm is called, it is called on lists of sizes strictly less than that of
the previous call. Since n = 0, 1 are covered, it will eventually terminate.
To prove correctness, note that in the end L1 is a sorted list of elements of L that are
≤ L[p] and L2 is a sorted list of elements of L that are > L[p], so [L1, L[p], L2] is L
sorted.

17. [8] Let C be a variable denoting the number of comparisons this algorithm makes, and suppose
the resulting sorted array is `1 ≤ `2 ≤ · · · ≤ `n. Furthermore, let Aij denote the event that
this algorithm at some point compares `i and `j. Prove that

E[C] =
∑

1≤i<j≤n

Pr[Aij].

Recall that Aij can happen at most once. Thus, let Bij be the random variable that is
1 if Aij occurs and 0 if Aij doesn’t occur. By linearity of expectation, we have

E[C] = E

[∑
1≤i<j≤n

Bij

]
=

∑
1≤i<j≤n

E[Bij] =
∑

1≤i<j≤n

Pr[Aij]

Page 12

18. [6] Prove that Aij occurs if and only if the first pivot chosen from `i, `i+1, . . . , `j is either `i or
`j.

If either `i or `j is chosen as a pivot, then it is compared to all other elements among
`i, `i+1, . . . , `j, so Aij occurs. If `k is chosen as a pivot before `i or `j, then they will be
broken up into different sets and thus never compared.

19. [6] Prove that Pr[Aij] = 2
j−i+1

.

Since each of `i, `i+1, . . . , `j have an equal probability of being chosen first as a pivot,
the probability that `i or `j are chosen first is 2

j−i+1
. By Problem 18, this is Pr[Aij].

20. [6] Let

Hn :=
1

1
+

1

2
+ · · ·+ 1

n

denote the nth harmonic number. Prove that E[C] = 2(n+ 1)Hn − 4n.

By Problems 17 and 19, we have

E[C] =
n∑
i=1

n∑
j=i+1

2

j − i+ 1
=

n∑
i=1

n−i+1∑
j=2

2

j

=
n∑
i=1

(2Hn−i+1 − 2) = 2
n∑
i=1

Hi − 2n

Now we notice that

[(i+ 1)Hi − i]− [iHi−1 − (i− 1)] = i(Hi −Hi−1) +Hi − 1 = Hi

so that
n∑
i=1

Hi = (n+ 1)Hn − n

21. [4] In the worst case, how many comparisons are made?

Page 13

Suppose every time we choose the smallest element in the set. Then the algorithm is
identical to Sorting Algorithm #1, so there are n(n−1)

2
comparisons made in the worst

case.
More formally, let Wn be the maximum number of comparisons on a list of size n. We
prove that Wn = n(n−1)

2
by strong induction on n. Base cases are easy (in particular,

one can check that this holds for n = 0 and n = 1). For the inductive step, note that
after the initial n−1 comparisons the list L is split into two lists of size k and n−1−k.
Thus

Wn = n− 1 + max
0≤k≤n−1

(Wk +Wn−1−k) = n− 1 + max
0≤k≤n−1

(
k2 − nk +

n2 − 3n+ 2

2

)
= n− 1 +

n2 − 3n+ 2

2
=
n(n− 1)

2
.

22. [8] Now you will compare the efficiencies of Sorting Algorithm #1 and Sorting Algorithm #2.
Let an be the answer to Problem 15. Prove that

lim
n→∞

2(n+ 1)Hn − 4n

an
= 0.

Suppose 2k ≤ n < 2k+1. We have

Hn =
1

1
+

(
1

2
+

1

3

)
+

(
1

4
+

1

5
+

1

6
+

1

7

)
+ · · ·+

(
1

2k
+ · · ·+ 1

n

)
≤ 1

1
+

(
1

2
+

1

2

)
+

(
1

4
+

1

4
+

1

4
+

1

4

)
+ · · ·+

(
1

2k
+ · · ·+ 1

2k

)
= 1 + 1 + 1 + · · ·+ n− 2k + 1

2k
= k − 1 +

n+ 1

2k
≤ k + 1 < log2 n+ 1

Thus,

lim
n→∞

2(n+ 1)(log2 n+ 1)− 4n

n(n− 1)/2
= 0

since the numerator grows with n log2 n and the denominator grows with n2.

6 Randomized Approximation Algorithms

Often, it is unreasonable to find the exact solution to a problem because maybe finding the exact
solution requires checking 2100 different cases. Therefore, sometimes it suffices to develop an approx-
imation algorithm, which is an algorithm that simply finds a very good solution to a problem. For

Page 14

example, we do not know any efficient algorithms (and none exist if P 6= NP!) to find an assignment
of boolean variables that satisfy a given set of boolean formulas; however, there is an approximation
an algorithm that can find an assignment satisfying an expected 87.5% of the formulas.

We will investigate the following problem: there are n people at a party, some of whom know
each other. A subset of these people is called a cover if, after we remove those people from the
party, no two distinct people at the party know one another. The problem is, given a list of who
knows who at the party, to find a cover of minimal size. The following approximation algorithm
determines a cover that is close to minimal size:

Page 15

Data: a list L of pairs {u, v} of people who know each other
Result: a cover that is close to minimal size
S ← ∅
for {u, v} ∈ L do

if u, v 6∈ S then
randomly choose u or v with equal probability
add the chosen vertex to S

end

end
return S

23. [4] Prove that this algorithm indeed returns a cover.

Suppose u knows v, but u, v 6∈ S. Then this algorithm will have chosen at least one of
u, v will be chosen to be in S, contradiction. Thus S is a cover.

24. [8] Let C denote any cover of minimal size. Let Si denote the contents of S after completing
the ith iteration of the loop. Prove that, for all i ≥ 0,

E[|Si ∩ C|] ≥ E[|Si\C|].

We induct on i. For i = 0, we have 0 ≥ 0. For general i, if one of u, v is in S then
Si+1 = Si so we’re done. Otherwise, we know at least one of u, v belongs to C as well.
Thus, the left-hand side has probability at least 1/2 of increasing by 1, whereas the
right-hand side has probability at most 1/2 of increasing by 1.

25. [6] Conclude that, after the algorithm terminates,

E[|S|] ≤ 2 · |C|.

We have
E[|S|] = E[|S\C|] + E[|S ∩ C|] ≤ 2 · E[|S ∩ C|] ≤ 2 · |C|.

We have proven that this simple algorithm produces a cover that doesn’t deviate too far from
the minimal size of a cover.

Now consider the following variant of the original problem: for each person v at the party, we
assign a number 0 < wv ≤ 1 that describes how much we want him to stay at the party, where 1
means we really want him to stay at the party, and 0.001 means we really want to kick him out
of the party. The number wv is called a weight. The problem is to find a cover of minimal total
weight. Notice that the original problem is the special case where all the weights are 1.

Page 16

26. [8] For a set T , let

W (T) :=
∑
v∈T

wv

We can modify the above algorithm by changing “randomly choose u or v with equal proba-
bility” to “randomly choose u with probability puv and v with probability 1− puv.” Redefine
C to be any cover of minimal weight, instead of minimal size. Find, with proof, the value of
puv that ensures that for all i ≥ 0,

E[W (Si ∩ C)] ≥ E[W (S\C)]

Let puv := wv

wu+wv
. Then the left-hand side has probability at least wuwv

wu+wv
of increasing

by 1, whereas the right-hand side has probability at most wuwv

wu+wv
of increasing by 1.

27. [4] Conclude that, after the algorithm terminates,

E[W (S)] ≤ 2 ·W (C).

We have

E[W (S)] = E[W (S\C)] + E[W (S ∩ C)] ≤ 2 · E[W (S ∩ C)] ≤ 2 ·W (C)

Page 17

