
Number Theory Solutions Packet
1. There exist two distinct positive integers, both of which are divisors of 1010, with sum equal to 157. What

are they?

Proposed by David Altizio

Solution. Suppose 157 = x+y for x and y divisors of 1010. Note that one of x or y must be odd and hence
a power of 5. Similarly, one of x or y must be not divisible by 5, and hence a power of 2. Thus 157 = 2a + 5b

for some nonnegative integers a and b. Now the largest power of 5 smaller than 157 is 125, and testing a
few cases we indeed find that 157 − 125 = 32 is the only solution which works. Thus the two integers are

125 and 32 .

2. Determine all possible values of m+ n, where m and n are positive integers satisfying

lcm(m,n)− gcd(m,n) = 103.

Proposed by David Altizio

Solution. Recall that by definition the least common multiple of two numbers is a multiple of their gcd.
Let lcm(m,n) = k · gcd(m,n) for some positive integer k. Then

lcm(m,n)− gcd(m,n) = k · gcd(m,n)− gcd(m,n) = gcd(m,n)(k − 1) = 103.

Recall that 103 is prime, so either gcd(m,n) = 103 and k = 2 or gcd(m,n) = 1 and k = 104. In the former
case, let m = 103m0 and n = 103n0. Then

lcm(103m0, 103n0) = 103 lcm(m0, n0) = 103 · 2,

so lcm(m0, n0) = 2. Combining this with the fact that m 6= n means that m0 and n0 must be 1 and 2 in some
order, i.e. {m,n} = {103, 206}. In the latter case, write 104 = 23 · 13. Since gcd(m,n) = 1, it follows that m
and n must either be 1 and 104 or 8 and 13 in some order. Combining both of these cases yields that m+ n
must be either 21, 105, or 309 .

3. For how many triples of positive integers (a, b, c) with 1 ≤ a, b, c ≤ 5 is the quantity

(a+ b)(a+ c)(b+ c)

not divisible by 4?

Proposed by David Altizio

Solution. Note that since the sum of the three multiplicands is (a+ b) + (b+ c) + (c+a) = 2(a+ b+ c), we
know that at least one of a+ b, b+ c, or c+ a is even. Thus the product is always divisible by 2. In order for
the product to not be divisible by 4, it must be the case that two of these quantities are odd and the third
one is congruent to 2 modulo 4.

WLOG suppose that a+ b and a+ c are odd and b+ c ≡ 2 (mod 4). Since (a+ b)− (a+ c) = b− c is even, it
follows that b and c are of the same parity. We now split into cases based on whether both are even or both
are odd.

• If both are even, then they cannot both be congruent modulo 4, or else their sum would be divisible by
4. It follows that b and c must be 4 and 2 in some order. Then a can be 1, 3, or 5; this gives a total of
2× 3 = 6 possibilities in this case.

• If both are odd, then they both must be congruent modulo 4, or else their sum would be 1 + 3 ≡ 0
(mod 4). This means they must be both either 1 (mod 4) or 3 (mod 4). Then a can be either 2 or 4, so
there are a total of 2× (22 + 1) = 10 possibilities in this case.



Multiplying by 3 from our WLOG above gives the final answer as 3(6 + 10) = 48 .

4. Let a1, a2, a3, a4, a5 be positive integers such that a1, a2, a3 and a3, a4, a5 are both geometric sequences and
a1, a3, a5 is an arithmetic sequence. If a3 = 1575, find all possible values of |a4 − a2|.

Proposed by Patrick Lin

Solution. Write the terms as

(a1, a2, a3, a4, a5) =

(
m2

n2
a,
m

n
a, a,

p

q
a,
p2

q2
a

)
,

where m/n and p/q are reduced fractions and a = 1575. Then arithmetic sequence gives

m2q2 + n2p2 = 2n2q2.

Since m and n are coprime, it follows that q | n. Similarly, n | q and hence n = q. We can rewrite

m2 + p2 = 2n2.

Because each term is an integer, we also have n2 | a, and hence n = 1, 3, 5, 15, since 1575 = 32 · 52 · 7. Assume
that m ≤ p; then the only triples (m, p, n) that satisfy these conditions are

(m, p, n) = (1, 1, 1), (3, 3, 3), (5, 5, 5), (15, 15, 15), (1, 7, 5), (3, 21, 15).

The possible ratios (m/n, p/n) are hence (1, 1) and (1/5, 7/5), and so

a4 − a2 = a
( p
n
− m

n

)
∈
{

0 · 1575,
6

5
· 1575

}
= {0, 1890} .

5. One can define the greatest common divisor of two positive rational numbers as follows: for a, b, c, and d
positive integers with gcd(a, b) = gcd(c, d) = 1, write

gcd
(a
b
,
c

d

)
=

gcd(ad, bc)

bd
.

For all positive integers K, let f(K) denote the number of ordered pairs of positive rational numbers (m,n)
wiht m < 1 and n < 1 such that

gcd(m,n) =
1

K
.

What is f(2017)− f(2016)?

Proposed by David Altizio

Solution. First remark that the gcd condition can be dropped, since if c and d are scaled up by a factor
of k, both gcd(ad, bc) and bd are scaled up by k, and so their effects cancel out.

Note that
e

f
gcd

(a
b
,
c

d

)
=
e

f
· gcd(ad, bc)

bd
=

gcd(ead, ebc)

bdf
= gcd

(
ae

bf
,
ce

df

)
.

Hence this definition of gcd is in fact multiplicative, and so it suffices to find pairs of rational numbers m′ and
n′ such that gcd(m′, n′) = 1.

Write m′ = a′

b′ and n′ = c′

d′ . Then

gcd

(
a′

b′
,
c′

d′

)
= 1 ⇐⇒ gcd(a′d′, b′c′) = b′d′.

Let a′d′ = Mb′d′ and b′c′ = Nb′d′ for some integers M and N with gcd(M,N) = 1. This simplifies to a′

b′ = M

and c′

d′ = N . So in fact, m′ and n′ are actually relatively prime integers.



Hence f(K) is equal to the number of pairs of positive integers (M,N) with 1 ≤M < K and 1 ≤ N < K such
that gcd(M,N) = 1. This in turn means that f(2017)− f(2016) equals the number of such pairs with either
M = 2016 or N = 2016. If M = 2016, then N can be any one of the integers for which gcd(N, 2016) = 1,
of which there are ϕ(2016) of them. Similarly, N = 2016 yields ϕ(2016) more ordered pairs. There is no
possibility for overcounting, and so the final answer is

2ϕ(2016) = 1152 .

6. Find the largest positive integer N satisfying the following properties:

• N is divisible by 7;

• Swapping the ith and jth digits of N (for any i and j with i 6= j) gives an integer which is not divisible
by 7.

Proposed by David Altizio

Solution. Write

N = akak−1 · · · a1a0 =

k∑
m=0

10mam.

Suppose digits ai and aj are swapped, whgere 0 ≤ i < j ≤ k, to form a new integer N ′. Then it is not hard
to see that

N −N ′ =
(
10jaj + 10iai

)
−
(
10jai + 10iaj

)
=
(
10j − 10i

)
(aj − ai).

The condition given in the problem statement is thus equivalent to this difference not being divisible by 7 for
all i and j.

If aj − ai is divisible by 7, then ai ≡ aj (mod 7). This in turn means that all digits must have different
residues modulo 7.

If 10j − 10i is divisible by 7, then 10j−i ≡ 1 (mod 7). Remark that ord7(10) = 6, meaning that it must be
the case that j− i ≡ 0 (mod 6). This means that any such N must have at most 6 digits; if this were not the
case, then swapping a0 and a6 would produce a new integer divisible by 7, thus violating the given conditions.

In all other cases, the difference will not be divisible by 7. Hence it suffices to find the largest integer N with
at most six digits such that N ≡ 0 (mod 7) and that each of the digits of N has a different remainder when
divided by 7. With this im mind, suppose k = 5, and write

N ≡
5∑

m=0

10mam ≡ 5a5 + 4a4 + 6a3 + 2a2 + 3a1 + a0 (mod 7).

In the interest of being greedy, set a5 = 9, a4 = 8, and a3 = 7; note that conveniently 987 is divisible by 7, so
the search for possible N is reduces to finding a0, a1, a2 ∈ {3, 4, 5, 6} such that

2a2 + 3a1 + a0 ≡ 0 (mod 7).

Note that by the Rearrangement Inequality 2a2 + 3a1 + a0 must be at least 2 · 4 + 3 · 3 + 5 = 22 and at most
2 · 5 + 3 · 6 + 4 = 32. Hence in fact it must be true that

2a2 + 3a1 + a0 = 28.

The only solutions to this under the given constraints is (a2, a1, a0) = (3, 6, 4) and (a2, a1, a0) = (5, 4, 6), so

the largest N must be 987546 .

7. The arithmetic derivative D(n) of a positive integer n is defined via the following rules:

• D(1) = 0;

• D(p) = 1 for all primes p;



• D(ab) = D(a)b+ aD(b) for all positive integers a and b.

Find the sum of all positive integers n below 1000 satisfying D(n) = n.

Proposed by Varun Kambhampati

Solution. Let N be a positive integer such that D(N) = N . Recall that we can write

N = pa1
1 · · · p

ak

k

for some sequence of primes {pj}kj=1 and exponents {aj}kj=1. We now prove a lemma which explains how to
compute arbitrary arithmetic derivatives.

LEMMA: We have

D (pa1
1 · · · p

ak

k ) = pa1
1 · · · p

ak

k

(
a1
p1

+ · · ·+ ak
pk

)
.

Proof. We first show that D(pj) = jpj−1 for p a prime; this proves the claim in the case of j = 1. Fortunately,
this is not hard. Write

D(pj) = pj−1D(p) + pD(pj−1) = pj−1 + pD(pj−1).

Now the claim follows from a simple induction argument.

To prove the lemma, we induct on k. The base case of k = 1 follows from the above paragraph. Now assume
the inductive hypothesis holds for some k, and write

D (pa1
1 · · · p

ak

k ) = pa1
1 · · · p

ak−1

k−1 D (pak

k ) + pak

k D
(
pa1
1 · · · p

ak−1

k−1
)

= pa1
1 · · · p

ak−1

k−1
(
akp

ak−1
k

)
+ pak

k

(
pa1
1 · · · p

ak−1

k−1
)(a1

p1
+ · · ·+ ak−1

pk−1

)
= pa1

1 · · · p
ak

k

(
a1
p1

+ · · ·+ ak
pk

)
.

Hence by induction we’re done.

Going back to the original problem, note that D(N) = N implies that

pa1
1 · · · p

ak

k

(
a1
p1

+ · · ·+ ak
pk

)
= pa1

1 · · · p
ak

k =⇒ a1
p1

+ · · ·+ ak
pk

= 1.

Multiplying both sides by p1 · · · pk yields

a1p1 · · · pk
p1

+ · · ·+ akp1 · · · pk
pk

= p1 · · · pk.

Now take both sides modulo p1. All but the first term goes away and so we are left with

a1p2 · · · pk ≡ 0 (mod p1).

Thus p1 | a1. However, since
a1
p1

+ · · ·+ ak
pk

= 1,

the ratio a1

p1
cannot exceed 1. Hence we in fact have equality, meaning that p1 = a1 and aj = 0 for all

2 ≤ j ≤ k. It follows that N = pp for prime p. Since 55 > 1000, the answer is simply 22 + 33 = 31 .



8. Let N be the number of ordered triples (a, b, c) ∈ {1, . . . , 2016}3 such that a2 +b2 +c2 ≡ 0 (mod 2017). What
are the last three digits of N?

Proposed by Andrew Kwon

Solution. We first claim that there are 20172 solutions if we allow a, b, c to equal 0. Letting z be such
that z2 ≡ −1 (mod 2017) (which we know exists because 2017 is a prime congruent to 1 (mod 4)), the given
congruence is equivalent to

a2 ≡ (cz)2 − b2 = (cz − b)(cz + b) (mod 2017).

If cz − b ≡ 0, then there is one choice for a and 2017 choices for b from which c is uniquely determined.
Otherwise, we have 2016 choices for the value of cz − b and 2017 choices for the value of a from which the
values cz + b, b, c are determined. Thus, overall there are 20172 triples (a, b, c) ∈ {0, . . . , 2016}3 satisfying the
condition.

We now use inclusion-exclusion to get the desired count. There are 2 · 2017 − 1 triples where a = 0, as all
choices for b except 0 yield two choices for c. The same is true for triples where b = 0, c = 0. This leads to a
count of 20172− 6 · 2017 + 3, while the triple (0, 0, 0) has been added once and removed thrice from the count,
so we add 2 to get

N = 20172 − 6 · 2017 + 5 = (2017− 5)(2017− 1),

and the last three digits of N are 2012 · 2016 ≡ 192 (mod 1000).

9. Find the smallest prime p for which there exist positive integers a, b such that

a2 + p3 = b4.

Proposed by Andrew Kwon

Solution. We rewrite the equation as p3 = (b2 − a)(b2 + a), and as b2 + a > b2 − a we have two cases.

• b2 + a = p2, b2 − a = p: In this case, 2b2 = p(p + 1), and noting that p 6= 2 we have b2 = p(p+1
2 ), from

which we find p|b. However, then the right hand side must have at least two factors of p, while p|p+1
2 is

impossible. Thus there are no solutions in this case.

• b2 + a = p3, b2 − a = 1: In this case, 2b2 = (p + 1)(p2 − p + 1), and we note again that p 6= 2. Now,
b2 = (p+1

2 )(p2 − p+ 1), and we have

gcd(p+1
2 , p2 − p+ 1) = gcd(p+ 1, p2 − p+ 1) = gcd(p+ 1, 3).

We split into further cases.

– p ≡ 1 (mod 3): As gcd(p+1
2 , p2−p+1) = 1, we must have that p+1

2 , p2−p+1 are each perfect squares

(since they are relatively prime and their product is a perfect square). Letting n2 = p+1
2 ,m2 =

p2 − p+ 1, we note that n > 1 and so

(2n2 − 2)2 < (2n2 − 1)2 − (2n2 − 1) + 1 = m2 < (2n2 − 1)2,

which is impossible. Once again, we find no solutions.

– p ≡ 2 (mod 3): By an argument similar to before, we must have p+1
2 , p2 − p+ 1 are each 3 times a

perfect square. Letting 3n2 = p+1
2 , 3m2 = p2 − p + 1 we find p = 6n2 − 1, 3m2 = p2 − p + 1. For

n = 1 we do have p = 5, however there are no m such that 3m2 = 21. On the other hand, for n = 2
we find p = 23, p2 − p + 1 = 507 = 3 · 169, and so 23 is the smallest valid value for p. Explicitly,
a = 6083, p = 23, b = 78 is the complete solution to the original diophantine.

10. For each positive integer n, define

g(n) = gcd {0!n!, 1!(n− 1)!, 2(n− 2)!, . . . , k!(n− k)!, . . . , n!0!} .



Find the sum of all n ≤ 25 for which g(n) = g(n+ 1).

Proposed by Cody Johnson and Andrew Kwon

Solution. We claim g(n) = (n+1)!
lcm(1,...,n+1) , and it suffices to show

νp(g(n)) = νp((n+ 1)!)− νp(lcm(1, . . . , n+ 1))

for each prime p. Noting that k!(n− k)! = n!/
(
n
k

)
, we have

νp(g(n)) = min
1≤k≤n

[
νp(n!)− νp

((
n

k

))]
= νp(n!)− max

1≤k≤n
νp

((
n

k

))
,

and so

νp(g(n)) = νp((n+ 1)!)− νp(lcm(1, . . . , n+ 1))

⇔ νp(n!)− max
1≤k≤n

νp

((
n

k

))
= νp(n+ 1) + νp(n!)− max

1≤j≤n+1
νp(j)

⇔ max
1≤j≤n+1

νp(j) = νp(n+ 1) + max
1≤k≤n

νp

((
n

k

))
.

Now, consider ` such that p` ≤ n + 1 < p`+1, so that maxj νp(j) = `. It suffices to show that νp(n + 1) +
maxk νp(

(
n
k

)
) = `. Suppose for the sake of contradiction that p`+1|(n+ 1)

(
n
k

)
for some k. Note that

(n+ 1)

(
n

k

)
= (k + 1)

(
n+ 1

k + 1

)
= (n− k + 1)

(
n+ 1

k

)
,

while evidently

νp

((
n

k

))
=
∑̀
s=1

(⌊
n

ps

⌋
−
⌊
k

ps

⌋
−
⌊
n− k
ps

⌋)
≤ `,

and similarly for
(
n+1
k+1

)
,
(
n+1
k

)
. Thus, we must have p | n+ 1, k + 1, n− k + 1, implying that p | (n− k + 1) +

(k + 1)− (n+ 1) = 1, which is impossible. To finish, we note that k = p` − 1 yields p` | (k + 1)
(
n+1
k+1

)
.

We conclude that g(n) = (n+1)!
lcm(1,...,n+1) , and now claim that g(n) = g(n+ 1)⇔ n+ 2 is prime. Supposing

(n+ 1)!

lcm(1, . . . , n+ 1)
=

(n+ 2)!

lcm(1, . . . , n+ 2)
,

we have n+ 2 = lcm(m,n+2)
m , where m = lcm(1, . . . , n+ 1). Thus, n+ 2 is relatively prime to 1, . . . , n+ 1 and

is prime. The other direction is clear.

Thus, the desired n ≤ 25 are 1, 3, 5, 9, 11, 15, 17, 21 and their sum is 82 .


