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Geometry Solutions Packet

1. Let ABC be a triangle with ZBAC = 117°. The angle bisector of ZABC intersects side AC' at D. Suppose
ANABD ~ ANACB. Compute the measure of ZABC), in degrees.

Proposed by David Altizio

Solution. Note that ZABD = ZACB by this similarity, so ZABC = 2/ACB. Letting the measure of
ZACB in degrees be 6, we have

0+20+117=180 = #6#=21

and so ZABC = .

2. Triangle ABC has an obtuse angle at ZA. Points D and F are placed on BC in the order B, D, E, C such
that /BAD = /BCA and ZCAE = ZCBA. If AB =10, AC =11, and DF = 4, compute BC.

Proposed by David Altizio

Solution. For simplicity let BC = a, CA = b, and AB = c¢. Note that AABD ~ ACBA, so BD = %
Similarly, CE = §7 S0

2 b2 2 2 221
DE:a—C———za—b+C =a—— =4
a a a a
Solving this quadratic yields a = .
A
B C
D E

Remark: The obtuse condition is necessary in order for the points B, D, E, and C to actually be in that
order; this is because /BAD + /ZCAFE < 90° < ZBAC'. Indeed, a triangle with side lengths 10, 11, and 17
has an obtuse angle with degree measure ~ 108°.

3. In acute triangle ABC, points D and E are the feet of the angle bisector and altitude from A respectively.
Suppose that AC — AB = 36 and DC — DB = 24. Compute EC — EB.

Proposed by David Altizio
Solution. Let AC = xz and BC = y. Note that by Angle Bisector Theorem,

DC _ DB _DC-DB _2
AC ~ AB  AC - AB 3

Thus DC = 2z and DB = 2y. Now note that by Pythagorean Theorem, EC? — EB? = AC? — AB?. This
means that

(EC — EB)(EC + EB) = (AC — AB)(AC + AB) = (EC — EB)- ;(x +y) =36(z+y).

Simplification yields EC — EB = 36 - % = .
Remark: This generalizes to the intersting identity (DC — DB)(EC — EB) = (AC — AB)?.



CMI¥D 2017

4. Let S be the sphere with center (0,0, 1) and radius 1 in R®. A plane P is tangent to S at the point (2o, yo, 20),
where zq, Yo, and zg are all positive. Suppose the intersection of plane P with the zy-plane is the line ¢ with
equation 2x + y = 10 in xy-space. What is z¢?

Proposed by David Altizio

Solution. Let O be the origin, C' the center of S, and T the point of tangency of S with P. Denote by P
the projection of O onto ¢, and consider the cross-section of this figure passing through P perpendicular to /.
Then S becomes a circle w with radius 1, and OP is tangent to w. It is intuitively clear that PT is the other
tangent to w in this cross section; we continue with the computation and then prove this fact afterwards.

Note that the line ¢ cuts a right triangle with side lengths 5 and 10 in the xy-plane. Thus, the length of
the altitude from O to £ is \/% = 2V/5, i.e. OP = 2v/5. Thus Pythagorean Theorem gives CP =

\/12 + (2¢/5)2 = /21. Now let ZOPC = 6. Compute

sin29:2sin9c059:2( 1 ) (2\/5> = 4\/5.

V21 ) \ V21 21
Thus /8
sin 20 = 57 = A= PTsin260 = 2v/5 o =21 |

It remains to prove the assertion at the end of the first paragraph. To do this, we use the formal definition of
a plane. Recall that for any point A and vector 7, the set of all points B such that /@ is perpendicular to
7l forms a plane. Thus any plane can be specified by a point in said plane a vector normal to the plane. (Of
course, this normal vector is not unique!)

With this, we can formally prove the above statement. Let Q denote the plane which forms the cross-section
defined above; it suffices to show that T lies in Q. Note that since P is tangent to S at T, we know that ﬁ
is normal to P. Since ¢ € P, we deduce that ¢ L ﬁ But remark that O? is normal to the xy-plane, which
{ lies in, so O? 1 ¢. Combining this with the fact that OP 1 ¢ by the definition of projection gives that ¢ is
normal to the entire plane Q. Thus T € Q as desired.

5. Two circles wy and wy are said to be orthogonal if they intersect each other at right angles. In other words,
for any point P lying on both w; and ws, if ¢ is the line tangent to wy at P and /5 is the line tangent to wo
at P, then ¢; 1 ¢5. (Two circles which do not intersect are not orthogonal.)

Let AABC be a triangle with area 20. Orthogonal circles wp and w¢e are drawn with wg centered at B and
we centered at C. Points Ts and T are placed on wp and we respectively such that AT is tangent to wg
and AT¢ is tangent to we. If ATy =7 and AT = 11, what is tan ZBAC?

Proposed by David Altizio

Solution. We first proceed with a lemma.

LEMMA: If w; and ws are orthogonal circles with radii 1 and ry respectively, and d is the distance between
the centers of these two circles, then
ri 413 =d°.

Proof. Let P be a point of intersection of w; and wsy, and let O; and Oy denote the centers of w; and wy
respectively. Note that by the definition of tangency, PO; is perpendicular to the line tangent to w; at P.
But recall that by the definition of orthogonal circles, the tangents to w; and wy passing through P are
perpendicular. Hence PO, 1 PO,, and the desired follows from Pythagorean Theorem. B

Let rp and r¢ denote the radii of wp and we respectively. Note that by Pythagorean Theorem,

ATE: = AB? —r% and ATE = AC? — 7.
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Adding these together yields
ATE: + ATE = AB? + AC? — (r%, +12)
= AB? + AC? — BC? = 2(AB)(AC) cos /BAC,

where the last step follows from Law of Cosines. Combined with (AB)(AC)sin ZBAC = [ABC], it follows
that

sin /BAC _ (AB)(AC)sin ZBAC _ 4[ABC] 420 8

cos /BAC ~ (AB)(AC)cos /BAC ~ AT: + ATZ ~ 724112 |17]

tan Z/BAC =

6. Cyclic quadrilateral ABCD satisfies ZABD = 70°, ZADB = 50°, and BC = CD. Suppose AB intersects
CD at point P, while AD intersects BC at point ). Compute ZAPQ — ZAQP in degrees.

Proposed by David Altizio

Solution. Note that
/BAD =180° — ZABD — ZADB = 60°,

and thus ZPCQ = ZBCD = 120°. Furthermore, since BC' = C'D, AC bisects ZBAD. Now let I denote the
incenter of AAPQ. It is well-known that

2PAQ _ gpe 4 % =120°,

/PIQ = 90° +

whence P, C, I, and @ are concyclic. But A, I, and C are collinear, and so in fact I = C, i.e. C is the
incenter of AAPQ. From

LAPD = /ABD — /BDC = 70° — 30° = 40° and LAQB = LZADB — ZDBC = 50° — 30° = 20°,
we thus find that
LAPQ — ZAQP = 2(LAPC — ZAQC) = 2(40° — 20°) =|40° |

A

—_——

Q

7. Two non-intersecting circles, w and €2, have centers C,, and Cq respectively. It is given that the radius of Q2
is strictly larger than the radius of w. The two common external tangents of {2 and w intersect at a point P,
and an internal tangent of the two circles intersects the common external tangents at X and Y. Suppose that
the radius of w is 4, the circumradius of APXY is 9, and XY bisects PCq. Compute XY

Proposed by David Altizio
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Solution. The problem statement is equivalent to finding BC, where ABC' is a triangle with inradius 4,
circumradius 9, and height from A equal to the A-exradius. The following is one such way to do this. Denote
by K the area of AABC, s its semiperimeter, r its inradius, R its circumradius, and r, its A-exradius. Write

1
Kziara:ra(s—a) = a=2(s—a)=b+c—a.

(The first two equalities are well-known formulas for the area of a triangle, where in the first one we substitute
rq for the height from A.) This means that b+ ¢ = 2a, or s = %a. Thus, we have K = rs = 6a. As a result,

6a — abc _ abc

=== = 216.
1R 36 =  bec 6

Now recall that by Heron’s Formula,

60 = /55— )5 D)5 — ) = ¢(g) (50) (-0 -

— 48=(s—Db)(s—c) =5 —s(b+c)+bc

3\* /3 1 3,
= <2a) — <2a) <2a) + be = 216 — Za .
Hence a = /224 =|4v14 |

. In triangle ABC with AB = 23, AC = 27, and BC = 20, let D be the foot of the A altitude. Suppose P is
the parabola with focus A passing through B and C, and denote by T the intersection point of AD with the
directrix of P. Determine the value of DT? — DA?. (Recall that a parabola P is the set of points which are
equidistant from a point, called the focus of P, and a line, called the directriz of P.)

Proposed by David Altizio and Evan Chen

Solution. Let ¢ denote the directrix of P, and let X and Y be the projections of B and C respectively
onto £. Recall that by definition of a parabola, AB = BX and AC = CY. It follows that X is the tangency
point of £ with the circle wp centered at B with radius AB. Similarly, Y is the tangency point of ¢ with the
circle we centered at C' with radius AC.

Now denote by A’ the second intersection point of wp and we. Note that AB = A’B and AC = A'C, so
AABC = AA'BC. Thus A’ is the reflection of A across BC. Thus A, D, and A" are collinear. It follows
that AD is the radical axis of wg and w¢e. In particular, T' is the midpoint of XY

Finally, remark that by Power of a Point,
TX?=TA -TA=(TD+ AD)(TD — AD) = TD? — AD?.
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Thus, it suffices to compute T X. This is one half the length of the common external tangent of wp and w¢,
which can be easily computed to be

V/BC? — (AC — AB)? = /202 — (27 — 23)% = 8/6.
Thus TX = 4+/6 and the requested answer is .

. Let AABC be an acute triangle with circumcenter O, and let @ # A denote the point on ©(ABC) for
which AQ 1 BC. The circumcircle of ABOC intersects lines AC' and AB for the second time at D and FE
respectively. Suppose that AQ, BC, and DFE are concurrent. If OD = 3 and OF = 7, compute AQ.

Proposed by David Altizio

Solution. First remark that DFE is antiparallel to BC, so AADE ~ AABC.

Let P be the foot of the perpendicular from A to BC. Note that BC is the radical axis of ®(ABC) and
©(BOC) and that DE is the radical axis of ®(BOC) and ©®(ADE). Hence P is the radical center of all three
circles, meaning that AP is the radical axis of ®(ABC) and ©®(ADFE). Since AQ is a chord of ©(ABC), we
may deduce that ADQF is cyclic.

Furthermore, a simple angle chase reveals that
/ADO = ZOBC =90° — ZA,

which implies DO 1. AB. Similarly EO 1 AC, so O is the orthocenter of AADE. This means that AO and
AP are isogonal with respect to ZA. As a result, AQ is a diameter of ®(ADF), which implies that ODQE
is a parallelogram. This means that

2(0D? + OF?) = 0Q* + DE? = OA* + DE>.
But note that if R’ is the circumradius of AADE, then
OA? + DE? = (2R cos A)?® + (2R sin A)? = 4R"?,

which we know is equal to AQ? since AQ is a diameter of ®(ADE). Thus

AQ = /AOD? + OF2) = \/2(3 + 72) =| 2v29 |
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10. Suppose AABC is such that AB = 13, AC = 15, and BC = 14. It is given that there exists a unique point
D on side BC such that the Euler lines of AABD and AACD are parallel. Determine the value of %. (The
Euler line of a triangle ABC' is the line connecting the centroid, circumcenter, and orthocenter of ABC'.)

Proposed by David Altizio

Solution. We solve this problem with the configuration shown below; it’s not hard to see that this is the
only possible one. Here, O, and O, are the circumcenters of AABD and AACD respectively, while Hy, and
H, are the orthocenters of AABD and AACD respectively.

We first claim that AAO,O, ~ AABC ~ ADHyH.. Indeed, these claims are not hard to prove: the first
comes from the fact that LZAOyB = ZAO.C — AAOyB ~ NAO.C, while the second comes from the fact
that DH, 1 AB and DH,. | AC. Details are left to the interested reader. Furthermore, these triangles are
directly similar to each other. Thus, there exists a spiral similarity S sending ADH,H,. — AAO,O..

Let P = HyH.N O,O,... Then since H,Oy, || H.O., we have PH,/H,H. = PO;,/O,0O.. Hence P is the center
of spiral similarity sending H, H, — OO, and thus it must be the center of S. But from the fact that OO,
is a perpendicular bisector of AD, we obtain that

DH, PD _

A0,  PA 7

so in fact AAO,O, = ADHyH,.. Furthermore, if R is the circumradius of AABD, then R = 2Rcos ZABD,
so cos ZABD = % and thus ZADB = 60°.

Now let X be the foot of the altitude from A to BC. Compute BX =5, CX =9, and AX = 12. It follows
that DX = 44/3, and so

CD |9-4y3 33

BD |5+4V3 934563




