Geometry Solutions Packet

1. Let ABC be a triangle with $\angle BAC = 117^{\circ}$. The angle bisector of $\angle ABC$ intersects side AC at D. Suppose $\triangle ABD \sim \triangle ACB$. Compute the measure of $\angle ABC$, in degrees.

Proposed by David Altizio

Solution. Note that $\angle ABD = \angle ACB$ by this similarity, so $\angle ABC = 2\angle ACB$. Letting the measure of $\angle ACB$ in degrees be θ , we have

$$\theta + 2\theta + 117 = 180 \implies \theta = 21$$

and so $\angle ABC = \boxed{42^{\circ}}$

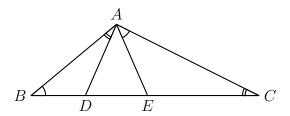
2. Triangle ABC has an obtuse angle at $\angle A$. Points D and E are placed on \overline{BC} in the order B, D, E, C such that $\angle BAD = \angle BCA$ and $\angle CAE = \angle CBA$. If AB = 10, AC = 11, and DE = 4, compute BC.

Proposed by David Altizio

Solution. For simplicity let BC = a, CA = b, and AB = c. Note that $\triangle ABD \sim \triangle CBA$, so $BD = \frac{c^2}{a}$. Similarly, $CE = \frac{b^2}{a}$, so

$$DE = a - \frac{c^2}{a} - \frac{b^2}{a} = a - \frac{b^2 + c^2}{a} = a - \frac{221}{a} = 4.$$

Solving this quadratic yields $a = \boxed{17}$



Remark: The obtuse condition is necessary in order for the points B, D, E, and C to actually be in that order; this is because $\angle BAD + \angle CAE < 90^{\circ} < \angle BAC$. Indeed, a triangle with side lengths 10, 11, and 17 has an obtuse angle with degree measure $\approx 108^{\circ}$.

3. In acute triangle ABC, points D and E are the feet of the angle bisector and altitude from A respectively. Suppose that AC - AB = 36 and DC - DB = 24. Compute EC - EB.

Proposed by David Altizio

Solution. Let AC = x and BC = y. Note that by Angle Bisector Theorem,

$$\frac{DC}{AC} = \frac{DB}{AB} = \frac{DC - DB}{AC - AB} = \frac{2}{3}.$$

Thus $DC = \frac{2}{3}x$ and $DB = \frac{2}{3}y$. Now note that by Pythagorean Theorem, $EC^2 - EB^2 = AC^2 - AB^2$. This means that

$$(EC - EB)(EC + EB) = (AC - AB)(AC + AB) \implies (EC - EB) \cdot \frac{2}{3}(x+y) = 36(x+y).$$

Simplification yields $EC - EB = 36 \cdot \frac{3}{2} = \boxed{54}$

Remark: This generalizes to the intersting identity $(DC - DB)(EC - EB) = (AC - AB)^2$.

4. Let S be the sphere with center (0,0,1) and radius 1 in \mathbb{R}^3 . A plane \mathcal{P} is tangent to S at the point (x_0,y_0,z_0) , where x_0 , y_0 , and z_0 are all positive. Suppose the intersection of plane \mathcal{P} with the xy-plane is the line ℓ with equation 2x + y = 10 in xy-space. What is z_0 ?

Proposed by David Altizio

Solution. Let O be the origin, C the center of S, and T the point of tangency of S with P. Denote by P the projection of O onto ℓ , and consider the cross-section of this figure passing through P perpendicular to ℓ . Then S becomes a circle ω with radius 1, and OP is tangent to ω . It is intuitively clear that PT is the other tangent to ω in this cross section; we continue with the computation and then prove this fact afterwards.

Note that the line ℓ cuts a right triangle with side lengths 5 and 10 in the xy-plane. Thus, the length of the altitude from O to ℓ is $\frac{5\cdot 10}{\sqrt{5^2+10^2}}=2\sqrt{5}$, i.e. $OP=2\sqrt{5}$. Thus Pythagorean Theorem gives CP=1

$$\sqrt{1^2 + (2\sqrt{5})^2} = \sqrt{21}$$
. Now let $\angle OPC = \theta$. Compute

$$\sin 2\theta = 2\sin\theta\cos\theta = 2\left(\frac{1}{\sqrt{21}}\right)\left(\frac{2\sqrt{5}}{\sqrt{21}}\right) = \frac{4\sqrt{5}}{21}.$$

Thus

$$\sin 2\theta = \frac{z_0}{PT}$$
 \Longrightarrow $z_0 = PT \sin 2\theta = 2\sqrt{5} \cdot \frac{4\sqrt{5}}{21} = \boxed{\frac{40}{21}}.$

It remains to prove the assertion at the end of the first paragraph. To do this, we use the formal definition of a plane. Recall that for any point A and vector \vec{n} , the set of all points B such that \overrightarrow{AB} is perpendicular to \vec{n} forms a plane. Thus any plane can be specified by a point in said plane a vector normal to the plane. (Of course, this normal vector is not unique!)

With this, we can formally prove the above statement. Let \mathcal{Q} denote the plane which forms the cross-section defined above; it suffices to show that T lies in \mathcal{Q} . Note that since \mathcal{P} is tangent to \mathcal{S} at T, we know that \overrightarrow{TC} is normal to \mathcal{P} . Since $\ell \in \mathcal{P}$, we deduce that $\ell \perp \overrightarrow{TC}$. But remark that \overrightarrow{OC} is normal to the xy-plane, which ℓ lies in, so $\overrightarrow{OC} \perp \ell$. Combining this with the fact that $OP \perp \ell$ by the definition of projection gives that ℓ is normal to the entire plane \mathcal{Q} . Thus $T \in \mathcal{Q}$ as desired.

5. Two circles ω_1 and ω_2 are said to be *orthogonal* if they intersect each other at right angles. In other words, for any point P lying on both ω_1 and ω_2 , if ℓ_1 is the line tangent to ω_1 at P and ℓ_2 is the line tangent to ω_2 at P, then $\ell_1 \perp \ell_2$. (Two circles which do not intersect are not orthogonal.)

Let $\triangle ABC$ be a triangle with area 20. Orthogonal circles ω_B and ω_C are drawn with ω_B centered at B and ω_C centered at C. Points T_B and T_C are placed on ω_B and ω_C respectively such that AT_B is tangent to ω_B and AT_C is tangent to ω_C . If $AT_B = 7$ and $AT_C = 11$, what is $\tan \angle BAC$?

Proposed by David Altizio

Solution. We first proceed with a lemma.

LEMMA: If ω_1 and ω_2 are orthogonal circles with radii r_1 and r_2 respectively, and d is the distance between the centers of these two circles, then

$$r_1^2 + r_2^2 = d^2$$
.

Proof. Let P be a point of intersection of ω_1 and ω_2 , and let O_1 and O_2 denote the centers of ω_1 and ω_2 respectively. Note that by the definition of tangency, PO_1 is perpendicular to the line tangent to ω_1 at P. But recall that by the definition of orthogonal circles, the tangents to ω_1 and ω_2 passing through P are perpendicular. Hence $PO_1 \perp PO_2$, and the desired follows from Pythagorean Theorem.

Let r_B and r_C denote the radii of ω_B and ω_C respectively. Note that by Pythagorean Theorem,

$$AT_B^2 = AB^2 - r_B^2 \qquad \text{and} \qquad AT_C^2 = AC^2 - r_C^2.$$

Adding these together yields

$$AT_B^2 + AT_C^2 = AB^2 + AC^2 - (r_B^2 + r_C^2)$$

= $AB^2 + AC^2 - BC^2 = 2(AB)(AC)\cos \angle BAC$,

where the last step follows from Law of Cosines. Combined with $\frac{1}{2}(AB)(AC)\sin \angle BAC = [ABC]$, it follows that

$$\tan \angle BAC = \frac{\sin \angle BAC}{\cos \angle BAC} = \frac{(AB)(AC)\sin \angle BAC}{(AB)(AC)\cos \angle BAC} = \frac{4[ABC]}{AT_B^2 + AT_C^2} = \frac{4 \cdot 20}{7^2 + 11^2} = \boxed{\frac{8}{17}}.$$

6. Cyclic quadrilateral ABCD satisfies $\angle ABD = 70^{\circ}$, $\angle ADB = 50^{\circ}$, and BC = CD. Suppose AB intersects CD at point P, while AD intersects BC at point Q. Compute $\angle APQ - \angle AQP$ in degrees.

Proposed by David Altizio

Solution. Note that

$$\angle BAD = 180^{\circ} - \angle ABD - \angle ADB = 60^{\circ},$$

and thus $\angle PCQ = \angle BCD = 120^{\circ}$. Furthermore, since BC = CD, AC bisects $\angle BAD$. Now let I denote the incenter of $\triangle APQ$. It is well-known that

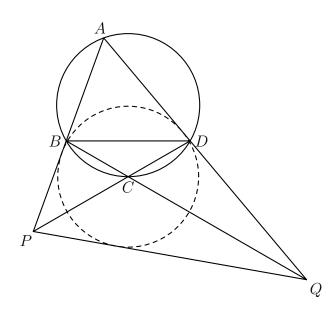
$$\angle PIQ = 90^{\circ} + \frac{\angle PAQ}{2} = 90^{\circ} + \frac{60^{\circ}}{2} = 120^{\circ},$$

whence P, C, I, and Q are concyclic. But A, I, and C are collinear, and so in fact $I \equiv C$, i.e. C is the incenter of $\triangle APQ$. From

$$\angle APD = \angle ABD - \angle BDC = 70^{\circ} - 30^{\circ} = 40^{\circ}$$
 and $\angle AQB = \angle ADB - \angle DBC = 50^{\circ} - 30^{\circ} = 20^{\circ}$,

we thus find that

$$\angle APQ - \angle AQP = 2(\angle APC - \angle AQC) = 2(40^{\circ} - 20^{\circ}) = \boxed{40^{\circ}}.$$



7. Two non-intersecting circles, ω and Ω , have centers C_{ω} and C_{Ω} respectively. It is given that the radius of Ω is strictly larger than the radius of ω . The two common external tangents of Ω and ω intersect at a point P, and an internal tangent of the two circles intersects the common external tangents at X and Y. Suppose that the radius of ω is 4, the circumradius of $\triangle PXY$ is 9, and XY bisects $\overline{PC_{\Omega}}$. Compute XY.

Proposed by David Altizio

Solution. The problem statement is equivalent to finding BC, where ABC is a triangle with inradius 4, circumradius 9, and height from A equal to the A-exadius. The following is one such way to do this. Denote by K the area of $\triangle ABC$, s its semiperimeter, r its inradius, R its circumradius, and r_a its A-exadius. Write

$$K = \frac{1}{2}ar_a = r_a(s-a) \implies a = 2(s-a) = b+c-a.$$

(The first two equalities are well-known formulas for the area of a triangle, where in the first one we substitute r_a for the height from A.) This means that b+c=2a, or $s=\frac{3}{2}a$. Thus, we have K=rs=6a. As a result,

$$6a = \frac{abc}{4R} = \frac{abc}{36} \implies bc = 216.$$

Now recall that by Heron's Formula,

$$6a = \sqrt{s(s-a)(s-b)(s-c)} = \sqrt{\left(\frac{3}{2}a\right)\left(\frac{1}{2}a\right)(s-b)(s-c)}$$

$$\implies 48 = (s-b)(s-c) = s^2 - s(b+c) + bc$$

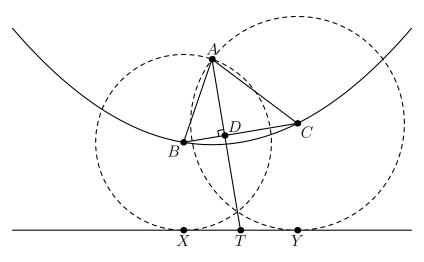
$$= \left(\frac{3}{2}a\right)^2 - \left(\frac{3}{2}a\right)\left(\frac{1}{2}a\right) + bc = 216 - \frac{3}{4}a^2.$$

Hence $a = \sqrt{224} = 4\sqrt{14}$

8. In triangle ABC with AB = 23, AC = 27, and BC = 20, let D be the foot of the A altitude. Suppose \mathcal{P} is the parabola with focus A passing through B and C, and denote by T the intersection point of AD with the directrix of \mathcal{P} . Determine the value of $DT^2 - DA^2$. (Recall that a parabola \mathcal{P} is the set of points which are equidistant from a point, called the *focus* of \mathcal{P} , and a line, called the *directrix* of \mathcal{P} .)

Proposed by David Altizio and Evan Chen

Solution. Let ℓ denote the directrix of \mathcal{P} , and let X and Y be the projections of B and C respectively onto ℓ . Recall that by definition of a parabola, AB = BX and AC = CY. It follows that X is the tangency point of ℓ with the circle ω_B centered at B with radius AB. Similarly, Y is the tangency point of ℓ with the circle ω_C centered at C with radius AC.



Now denote by A' the second intersection point of ω_B and ω_C . Note that AB = A'B and AC = A'C, so $\triangle ABC \cong \triangle A'BC$. Thus A' is the reflection of A across BC. Thus A, D, and A' are collinear. It follows that AD is the radical axis of ω_B and ω_C . In particular, T is the midpoint of \overline{XY} .

Finally, remark that by Power of a Point,

$$TX^{2} = TA' \cdot TA = (TD + AD)(TD - AD) = TD^{2} - AD^{2}.$$

Thus, it suffices to compute TX. This is one half the length of the common external tangent of ω_B and ω_C , which can be easily computed to be

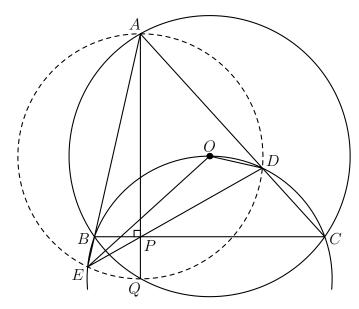
$$\sqrt{BC^2 - (AC - AB)^2} = \sqrt{20^2 - (27 - 23)^2} = 8\sqrt{6}.$$

Thus $TX = 4\sqrt{6}$ and the requested answer is 96

9. Let $\triangle ABC$ be an acute triangle with circumcenter O, and let $Q \neq A$ denote the point on $\odot(ABC)$ for which $AQ \perp BC$. The circumcircle of $\triangle BOC$ intersects lines AC and AB for the second time at D and E respectively. Suppose that AQ, BC, and DE are concurrent. If OD = 3 and OE = 7, compute AQ.

Proposed by David Altizio

Solution. First remark that DE is antiparallel to BC, so $\triangle ADE \sim \triangle ABC$.



Let P be the foot of the perpendicular from A to BC. Note that BC is the radical axis of $\odot(ABC)$ and $\odot(BOC)$ and that DE is the radical axis of $\odot(BOC)$ and $\odot(ADE)$. Hence P is the radical center of all three circles, meaning that AP is the radical axis of $\odot(ABC)$ and $\odot(ADE)$. Since AQ is a chord of $\odot(ABC)$, we may deduce that ADQE is cyclic.

Furthermore, a simple angle chase reveals that

$$\angle ADO = \angle OBC = 90^{\circ} - \angle A.$$

which implies $DO \perp AB$. Similarly $EO \perp AC$, so O is the orthocenter of $\triangle ADE$. This means that AO and AP are isogonal with respect to $\angle A$. As a result, AQ is a diameter of $\bigcirc (ADE)$, which implies that ODQE is a parallelogram. This means that

$$2(OD^2 + OE^2) = OQ^2 + DE^2 = OA^2 + DE^2.$$

But note that if R' is the circumradius of $\triangle ADE$, then

$$OA^2 + DE^2 = (2R'\cos A)^2 + (2R'\sin A)^2 = 4R'^2$$

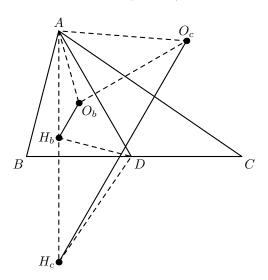
which we know is equal to AQ^2 since AQ is a diameter of $\odot(ADE)$. Thus

$$AQ = \sqrt{2(OD^2 + OE^2)} = \sqrt{2(3^2 + 7^2)} = 2\sqrt{29}$$
.

10. Suppose $\triangle ABC$ is such that AB = 13, AC = 15, and BC = 14. It is given that there exists a unique point D on side \overline{BC} such that the Euler lines of $\triangle ABD$ and $\triangle ACD$ are parallel. Determine the value of $\frac{BD}{CD}$. (The Euler line of a triangle ABC is the line connecting the centroid, circumcenter, and orthocenter of ABC.)

Proposed by David Altizio

Solution. We solve this problem with the configuration shown below; it's not hard to see that this is the only possible one. Here, O_b and O_c are the circumcenters of $\triangle ABD$ and $\triangle ACD$ respectively, while H_b and H_c are the orthocenters of $\triangle ABD$ and $\triangle ACD$ respectively.



We first claim that $\triangle AO_bO_c \sim \triangle ABC \sim \triangle DH_bH_c$. Indeed, these claims are not hard to prove: the first comes from the fact that $\angle AO_bB = \angle AO_cC \implies \triangle AO_bB \sim \triangle AO_cC$, while the second comes from the fact that $DH_b \perp AB$ and $DH_c \perp AC$. Details are left to the interested reader. Furthermore, these triangles are directly similar to each other. Thus, there exists a spiral similarity \mathcal{S} sending $\triangle DH_bH_c \mapsto \triangle AO_bO_c$.

Let $P = H_b H_c \cap O_b O_c$. Then since $H_b O_b \parallel H_c O_c$, we have $P H_b / H_b H_c = P O_b / O_b O_c$. Hence P is the center of spiral similarity sending $\overline{H_a H_b} \mapsto \overline{O_b O_c}$, and thus it must be the center of S. But from the fact that $O_b O_c$ is a perpendicular bisector of \overline{AD} , we obtain that

$$\frac{DH_b}{AO_b} = \frac{PD}{PA} = 1,$$

so in fact $\triangle AO_bO_c \cong \triangle DH_bH_c$. Furthermore, if R is the circumradius of $\triangle ABD$, then $R = 2R\cos\angle ABD$, so $\cos\angle ABD = \frac{1}{2}$ and thus $\angle ADB = 60^{\circ}$.

Now let X be the foot of the altitude from A to BC. Compute BX = 5, CX = 9, and AX = 12. It follows that $DX = 4\sqrt{3}$, and so

$$\frac{BD}{CD} = \boxed{\frac{5 + 4\sqrt{3}}{9 - 4\sqrt{3}} = \frac{93 + 56\sqrt{3}}{33}}$$