
Geometry Solutions Packet
1. Let ABC be a triangle with ∠BAC = 117◦. The angle bisector of ∠ABC intersects side AC at D. Suppose
4ABD ∼ 4ACB. Compute the measure of ∠ABC, in degrees.

Proposed by David Altizio

Solution. Note that ∠ABD = ∠ACB by this similarity, so ∠ABC = 2∠ACB. Letting the measure of
∠ACB in degrees be θ, we have

θ + 2θ + 117 = 180 =⇒ θ = 21

and so ∠ABC = 42◦ .

2. Triangle ABC has an obtuse angle at ∠A. Points D and E are placed on BC in the order B, D, E, C such
that ∠BAD = ∠BCA and ∠CAE = ∠CBA. If AB = 10, AC = 11, and DE = 4, compute BC.

Proposed by David Altizio

Solution. For simplicity let BC = a, CA = b, and AB = c. Note that 4ABD ∼ 4CBA, so BD = c2

a .

Similarly, CE = b2

a , so

DE = a− c2

a
− b2

a
= a− b2 + c2

a
= a− 221

a
= 4.

Solving this quadratic yields a = 17 .

A

B C
D E

Remark: The obtuse condition is necessary in order for the points B, D, E, and C to actually be in that
order; this is because ∠BAD + ∠CAE < 90◦ < ∠BAC. Indeed, a triangle with side lengths 10, 11, and 17
has an obtuse angle with degree measure ≈ 108◦.

3. In acute triangle ABC, points D and E are the feet of the angle bisector and altitude from A respectively.
Suppose that AC −AB = 36 and DC −DB = 24. Compute EC − EB.

Proposed by David Altizio

Solution. Let AC = x and BC = y. Note that by Angle Bisector Theorem,

DC

AC
=
DB

AB
=
DC −DB
AC −AB

=
2

3
.

Thus DC = 2
3x and DB = 2

3y. Now note that by Pythagorean Theorem, EC2 − EB2 = AC2 − AB2. This
means that

(EC − EB)(EC + EB) = (AC −AB)(AC +AB) =⇒ (EC − EB) · 2

3
(x+ y) = 36(x+ y).

Simplification yields EC − EB = 36 · 3
2 = 54 .

Remark: This generalizes to the intersting identity (DC −DB)(EC − EB) = (AC −AB)2.



4. Let S be the sphere with center (0, 0, 1) and radius 1 in R3. A plane P is tangent to S at the point (x0, y0, z0),
where x0, y0, and z0 are all positive. Suppose the intersection of plane P with the xy-plane is the line ` with
equation 2x+ y = 10 in xy-space. What is z0?

Proposed by David Altizio

Solution. Let O be the origin, C the center of S, and T the point of tangency of S with P. Denote by P
the projection of O onto `, and consider the cross-section of this figure passing through P perpendicular to `.
Then S becomes a circle ω with radius 1, and OP is tangent to ω. It is intuitively clear that PT is the other
tangent to ω in this cross section; we continue with the computation and then prove this fact afterwards.

Note that the line ` cuts a right triangle with side lengths 5 and 10 in the xy-plane. Thus, the length of
the altitude from O to ` is 5·10√

52+102
= 2
√

5, i.e. OP = 2
√

5. Thus Pythagorean Theorem gives CP =√
12 + (2

√
5)2 =

√
21. Now let ∠OPC = θ. Compute

sin 2θ = 2 sin θ cos θ = 2

(
1√
21

)(
2
√

5√
21

)
=

4
√

5

21
.

Thus

sin 2θ =
z0

PT
=⇒ z0 = PT sin 2θ = 2

√
5 · 4
√

5

21
=

40

21
.

It remains to prove the assertion at the end of the first paragraph. To do this, we use the formal definition of

a plane. Recall that for any point A and vector ~n, the set of all points B such that
−−→
AB is perpendicular to

~n forms a plane. Thus any plane can be specified by a point in said plane a vector normal to the plane. (Of
course, this normal vector is not unique!)

With this, we can formally prove the above statement. Let Q denote the plane which forms the cross-section

defined above; it suffices to show that T lies in Q. Note that since P is tangent to S at T , we know that
−→
TC

is normal to P. Since ` ∈ P, we deduce that ` ⊥
−→
TC. But remark that

−−→
OC is normal to the xy-plane, which

` lies in, so
−−→
OC ⊥ `. Combining this with the fact that OP ⊥ ` by the definition of projection gives that ` is

normal to the entire plane Q. Thus T ∈ Q as desired.

5. Two circles ω1 and ω2 are said to be orthogonal if they intersect each other at right angles. In other words,
for any point P lying on both ω1 and ω2, if `1 is the line tangent to ω1 at P and `2 is the line tangent to ω2

at P , then `1 ⊥ `2. (Two circles which do not intersect are not orthogonal.)

Let 4ABC be a triangle with area 20. Orthogonal circles ωB and ωC are drawn with ωB centered at B and
ωC centered at C. Points TB and TC are placed on ωB and ωC respectively such that ATB is tangent to ωB

and ATC is tangent to ωC . If ATB = 7 and ATC = 11, what is tan∠BAC?

Proposed by David Altizio

Solution. We first proceed with a lemma.

LEMMA: If ω1 and ω2 are orthogonal circles with radii r1 and r2 respectively, and d is the distance between
the centers of these two circles, then

r2
1 + r2

2 = d2.

Proof. Let P be a point of intersection of ω1 and ω2, and let O1 and O2 denote the centers of ω1 and ω2

respectively. Note that by the definition of tangency, PO1 is perpendicular to the line tangent to ω1 at P .
But recall that by the definition of orthogonal circles, the tangents to ω1 and ω2 passing through P are
perpendicular. Hence PO1 ⊥ PO2, and the desired follows from Pythagorean Theorem. �

Let rB and rC denote the radii of ωB and ωC respectively. Note that by Pythagorean Theorem,

AT 2
B = AB2 − r2

B and AT 2
C = AC2 − r2

C .



Adding these together yields

AT 2
B +AT 2

C = AB2 +AC2 − (r2
B + r2

C)

= AB2 +AC2 −BC2 = 2(AB)(AC) cos∠BAC,

where the last step follows from Law of Cosines. Combined with 1
2 (AB)(AC) sin∠BAC = [ABC], it follows

that

tan∠BAC =
sin∠BAC
cos∠BAC

=
(AB)(AC) sin∠BAC
(AB)(AC) cos∠BAC

=
4[ABC]

AT 2
B +AT 2

C

=
4 · 20

72 + 112
=

8

17
.

6. Cyclic quadrilateral ABCD satisfies ∠ABD = 70◦, ∠ADB = 50◦, and BC = CD. Suppose AB intersects
CD at point P , while AD intersects BC at point Q. Compute ∠APQ− ∠AQP in degrees.

Proposed by David Altizio

Solution. Note that
∠BAD = 180◦ − ∠ABD − ∠ADB = 60◦,

and thus ∠PCQ = ∠BCD = 120◦. Furthermore, since BC = CD, AC bisects ∠BAD. Now let I denote the
incenter of 4APQ. It is well-known that

∠PIQ = 90◦ +
∠PAQ

2
= 90◦ +

60◦

2
= 120◦,

whence P , C, I, and Q are concyclic. But A, I, and C are collinear, and so in fact I ≡ C, i.e. C is the
incenter of 4APQ. From

∠APD = ∠ABD − ∠BDC = 70◦ − 30◦ = 40◦ and ∠AQB = ∠ADB − ∠DBC = 50◦ − 30◦ = 20◦,

we thus find that
∠APQ− ∠AQP = 2(∠APC − ∠AQC) = 2(40◦ − 20◦) = 40◦ .

A

B

C

D

P

Q

7. Two non-intersecting circles, ω and Ω, have centers Cω and CΩ respectively. It is given that the radius of Ω
is strictly larger than the radius of ω. The two common external tangents of Ω and ω intersect at a point P ,
and an internal tangent of the two circles intersects the common external tangents at X and Y . Suppose that
the radius of ω is 4, the circumradius of 4PXY is 9, and XY bisects PCΩ. Compute XY .

Proposed by David Altizio



Solution. The problem statement is equivalent to finding BC, where ABC is a triangle with inradius 4,
circumradius 9, and height from A equal to the A-exradius. The following is one such way to do this. Denote
by K the area of 4ABC, s its semiperimeter, r its inradius, R its circumradius, and ra its A-exradius. Write

K =
1

2
ara = ra(s− a) =⇒ a = 2(s− a) = b+ c− a.

(The first two equalities are well-known formulas for the area of a triangle, where in the first one we substitute
ra for the height from A.) This means that b+ c = 2a, or s = 3

2a. Thus, we have K = rs = 6a. As a result,

6a =
abc

4R
=
abc

36
=⇒ bc = 216.

Now recall that by Heron’s Formula,

6a =
√
s(s− a)(s− b)(s− c) =

√(
3

2
a

)(
1

2
a

)
(s− b)(s− c)

=⇒ 48 = (s− b)(s− c) = s2 − s(b+ c) + bc

=

(
3

2
a

)2

−
(

3

2
a

)(
1

2
a

)
+ bc = 216− 3

4
a2.

Hence a =
√

224 = 4
√

14 .

8. In triangle ABC with AB = 23, AC = 27, and BC = 20, let D be the foot of the A altitude. Suppose P is
the parabola with focus A passing through B and C, and denote by T the intersection point of AD with the
directrix of P. Determine the value of DT 2 −DA2. (Recall that a parabola P is the set of points which are
equidistant from a point, called the focus of P, and a line, called the directrix of P.)

Proposed by David Altizio and Evan Chen

Solution. Let ` denote the directrix of P, and let X and Y be the projections of B and C respectively
onto `. Recall that by definition of a parabola, AB = BX and AC = CY . It follows that X is the tangency
point of ` with the circle ωB centered at B with radius AB. Similarly, Y is the tangency point of ` with the
circle ωC centered at C with radius AC.

A

B
C

T

D

X Y

Now denote by A′ the second intersection point of ωB and ωC . Note that AB = A′B and AC = A′C, so
4ABC ∼= 4A′BC. Thus A′ is the reflection of A across BC. Thus A, D, and A′ are collinear. It follows
that AD is the radical axis of ωB and ωC . In particular, T is the midpoint of XY .

Finally, remark that by Power of a Point,

TX2 = TA′ · TA = (TD +AD)(TD −AD) = TD2 −AD2.



Thus, it suffices to compute TX. This is one half the length of the common external tangent of ωB and ωC ,
which can be easily computed to be√

BC2 − (AC −AB)2 =
√

202 − (27− 23)2 = 8
√

6.

Thus TX = 4
√

6 and the requested answer is 96 .

9. Let 4ABC be an acute triangle with circumcenter O, and let Q 6= A denote the point on �(ABC) for
which AQ ⊥ BC. The circumcircle of 4BOC intersects lines AC and AB for the second time at D and E
respectively. Suppose that AQ, BC, and DE are concurrent. If OD = 3 and OE = 7, compute AQ.

Proposed by David Altizio

Solution. First remark that DE is antiparallel to BC, so 4ADE ∼ 4ABC.

A

B C

Q

D

E

O

P

Let P be the foot of the perpendicular from A to BC. Note that BC is the radical axis of �(ABC) and
�(BOC) and that DE is the radical axis of �(BOC) and �(ADE). Hence P is the radical center of all three
circles, meaning that AP is the radical axis of �(ABC) and �(ADE). Since AQ is a chord of �(ABC), we
may deduce that ADQE is cyclic.

Furthermore, a simple angle chase reveals that

∠ADO = ∠OBC = 90◦ − ∠A,

which implies DO ⊥ AB. Similarly EO ⊥ AC, so O is the orthocenter of 4ADE. This means that AO and
AP are isogonal with respect to ∠A. As a result, AQ is a diameter of �(ADE), which implies that ODQE
is a parallelogram. This means that

2(OD2 +OE2) = OQ2 +DE2 = OA2 +DE2.

But note that if R′ is the circumradius of 4ADE, then

OA2 +DE2 = (2R′ cosA)2 + (2R′ sinA)2 = 4R′2,

which we know is equal to AQ2 since AQ is a diameter of �(ADE). Thus

AQ =
√

2(OD2 +OE2) =
√

2(32 + 72) = 2
√

29 .



10. Suppose 4ABC is such that AB = 13, AC = 15, and BC = 14. It is given that there exists a unique point
D on side BC such that the Euler lines of 4ABD and 4ACD are parallel. Determine the value of BD

CD . (The
Euler line of a triangle ABC is the line connecting the centroid, circumcenter, and orthocenter of ABC.)

Proposed by David Altizio

Solution. We solve this problem with the configuration shown below; it’s not hard to see that this is the
only possible one. Here, Ob and Oc are the circumcenters of 4ABD and 4ACD respectively, while Hb and
Hc are the orthocenters of 4ABD and 4ACD respectively.

A

B CD

Ob

Oc

Hb

Hc

We first claim that 4AObOc ∼ 4ABC ∼ 4DHbHc. Indeed, these claims are not hard to prove: the first
comes from the fact that ∠AObB = ∠AOcC =⇒ 4AObB ∼ 4AOcC, while the second comes from the fact
that DHb ⊥ AB and DHc ⊥ AC. Details are left to the interested reader. Furthermore, these triangles are
directly similar to each other. Thus, there exists a spiral similarity S sending 4DHbHc 7→ 4AObOc.

Let P = HbHc ∩ ObOc. Then since HbOb ‖ HcOc, we have PHb/HbHc = POb/ObOc. Hence P is the center
of spiral similarity sending HaHb 7→ ObOc, and thus it must be the center of S. But from the fact that ObOc

is a perpendicular bisector of AD, we obtain that

DHb

AOb
=
PD

PA
= 1,

so in fact 4AObOc
∼= 4DHbHc. Furthermore, if R is the circumradius of 4ABD, then R = 2R cos∠ABD,

so cos∠ABD = 1
2 and thus ∠ADB = 60◦.

Now let X be the foot of the altitude from A to BC. Compute BX = 5, CX = 9, and AX = 12. It follows
that DX = 4

√
3, and so

BD

CD
=

5 + 4
√

3

9− 4
√

3
=

93 + 56
√

3

33
.


