CMIMO 2017 Geometry Round

INSTRUCTIONS

- 1. Do not look at the test before the proctor starts the round.
- 2. This test consists of 10 short-answer problems to be solved in 60 minutes. Each question is worth one point.
- 3. Write your name, team name, and team ID on your answer sheet. Circle the subject of the test you are currently taking.
- 4. Write your answers in the corresponding boxes on the answer sheets.
- 5. No computational aids other than pencil/pen are permitted.
- 6. Answers must be reasonably simplified.
- 7. If you believe that the test contains an error, submit your protest in writing to Doherty 2302 by the end of lunch.

CMIMD 2017

Geometry

- 1. Let ABC be a triangle with $\angle BAC = 117^{\circ}$. The angle bisector of $\angle ABC$ intersects side AC at D. Suppose $\triangle ABD \sim \triangle ACB$. Compute the measure of $\angle ABC$, in degrees.
- 2. Triangle ABC has an obtuse angle at $\angle A$. Points D and E are placed on \overline{BC} in the order B, D, E, C such that $\angle BAD = \angle BCA$ and $\angle CAE = \angle CBA$. If AB = 10, AC = 11, and DE = 4, determine BC.
- 3. In acute triangle ABC, points D and E are the feet of the angle bisector and altitude from A respectively. Suppose that AC AB = 36 and DC DB = 24. Compute EC EB.
- 4. Let S be the sphere with center (0,0,1) and radius 1 in \mathbb{R}^3 . A plane \mathcal{P} is tangent to S at the point (x_0,y_0,z_0) , where x_0 , y_0 , and z_0 are all positive. Suppose the intersection of plane \mathcal{P} with the xy-plane is the line with equation 2x + y = 10 in xy-space. What is z_0 ?
- 5. Two circles ω_1 and ω_2 are said to be *orthogonal* if they intersect each other at right angles. In other words, for any point P lying on both ω_1 and ω_2 , if ℓ_1 is the line tangent to ω_1 at P and ℓ_2 is the line tangent to ω_2 at P, then $\ell_1 \perp \ell_2$. (Two circles which do not intersect are not orthogonal.)
 - Let $\triangle ABC$ be a triangle with area 20. Orthogonal circles ω_B and ω_C are drawn with ω_B centered at B and ω_C centered at C. Points T_B and T_C are placed on ω_B and ω_C respectively such that AT_B is tangent to ω_B and AT_C is tangent to ω_C . If $AT_B = 7$ and $AT_C = 11$, what is $\tan \angle BAC$?
- 6. Cyclic quadrilateral ABCD satisfies $\angle ABD = 70^{\circ}$, $\angle ADB = 50^{\circ}$, and BC = CD. Suppose AB intersects CD at point P, while AD intersects BC at point Q. Compute $\angle APQ \angle AQP$.
- 7. Two non-intersecting circles, ω and Ω , have centers C_{ω} and C_{Ω} respectively. It is given that the radius of Ω is strictly larger than the radius of ω . The two common external tangents of Ω and ω intersect at a point P, and an internal tangent of the two circles intersects the common external tangents at X and Y. Suppose that the radius of ω is 4, the circumradius of $\triangle PXY$ is 9, and XY bisects $\overline{PC_{\Omega}}$. Compute XY.
- 8. In triangle ABC with AB = 23, AC = 27, and BC = 20, let D be the foot of the A altitude. Let \mathcal{P} be the parabola with focus A passing through B and C, and denote by T the intersection point of AD with the directrix of \mathcal{P} . Determine the value of $DT^2 DA^2$. (Recall that a parabola \mathcal{P} is the set of points which are equidistant from a point, called the *focus* of \mathcal{P} , and a line, called the *directrix* of \mathcal{P} .)
- 9. Let $\triangle ABC$ be an acute triangle with circumcenter O, and let $Q \neq A$ denote the point on $\odot(ABC)$ for which $AQ \perp BC$. The circumcircle of $\triangle BOC$ intersects lines AC and AB for the second time at D and E respectively. Suppose that AQ, BC, and DE are concurrent. If OD = 3 and OE = 7, compute AQ.
- 10. Suppose $\triangle ABC$ is such that AB=13, AC=15, and BC=14. It is given that there exists a unique point D on side \overline{BC} such that the Euler lines of $\triangle ABD$ and $\triangle ACD$ are parallel. Determine the value of $\frac{BD}{CD}$. (The Euler line of a triangle ABC is the line connecting the centroid, circumcenter, and orthocenter of ABC.)