
Algebra Tiebreaker Solutions
1. Find all real numbers x such that the expression

log2|1 + log2|2 + log2|x|||

does not have a defined value.

Proposed by Patrick Lin

Solution. Note that log|x| is undefined if and only if x = 0. If the inside logarithm is undefined, then
x = 0. If the middle logarithm is undefined, then log2|x| = −2 =⇒ x = ± 1

4 . If the outside logarithm is

undefined, then it follows that 2 + log2|x| = ± 1
2 =⇒ x = ±2−5/2,±2−3/2. These are all seven solutions, and

so the answer is {0,± 1
4 ,±2−3/2,±2−5/2} .

2. Let x be a real number between 0 and π
2 such that

sin4(x)

42
+

cos4(x)

75
=

1

117
.

Find tan(x).

Proposed by Varun Kambhampati

Solution. Note that by Cauchy-Schwarz, we have

sin4(x)

42
+

cos4(x)

75
≥ (sin2(x) + cos2(x))2

42 + 75
=

1

117
.

Thus in fact we have equality, which holds when

sin2(x)

42
=

cos2(x)

75
=⇒ tan2(x) =

14

25
.

Hence tan(x) =
√

14
5 .

3. The parabola P given by equation y = x2 is rotated some acute angle θ clockwise about the origin such that
it hits both the x and y axes at two distinct points. Suppose the length of the segment P cuts the x-axis is
1. What is the length of the segment P cuts the y-axis?

Proposed by David Altizio

Solution. Instead of rotating the parabola, consider rotating the axes. That is, suppose we have two
perpendicular lines `1 and `2 intersecting at the origin such that P cuts off a segment from `1 of length 1; it
suffices to find the length of the segment P cuts from `2.

Suppose `1 intersects P at a point (x0, x
2
0). Then the Pythagorean Theorem dictates that x2

0 + x4
0 = 1.

Furthermore, note that the slope of `1 is
x2
0

x0
= x0. As a result, the slope of `2 must be − 1

x0
. Hence the

equation of line `2 is y = − 1
x0
t. It is easy to see from here that this intersects P for the second time at the

point (− 1
x0
, 1
x2
0
). Thus, letting L be the length of the segment from `2, we have

L2 =
1

x2
0

+
1

x4
0

=
x2

0 + 1

x4
0

=
1

x6
0

.

It suffices to find x6
0 and then take the positive square root.

Let t = x2
0, so that t+ t2 = 1. Then

t3 = t(t2) = t(1− t) = t− t2 = t− (1− t) = 2t− 1.



But solving for t gives t = −1+
√

5
2 , so

2t− 1 = 2

(
−1 +

√
5

2

)
− 1 =

√
5− 2.

Thus
1

x6
0

=
1

t3
=

1√
5− 2

=
√

5 + 2

and so the requested answer is

√√
5 + 2 . For reference, this is approximately equal to 2.06.



Combinatorics Tiebreaker Solutions
1. Jesse has ten squares, which are labeled 1, 2, . . . , 10. In how many ways can he color each square either red,

green, yellow, or blue such that for all 1 ≤ i < j ≤ 10, if i divides j, then the i-th and j-th squares have
different colors?

Proposed by Patrick Lin

Solution. Observe that {1, 2, 4, 8} must all be colored differently, which give 4! = 24 combinations. If 2
and 3 are colored the same, there are two choices for 6, and otherwise there is 1, for a total of 2 + 1 + 1 = 4
choices; similarly, there are 4 choices for coloring 5 and 10. Independently, there are 2 choices for 9 and 3
choices for 7, which give a total of 24 · 4 · 4 · 2 · 3 = 2304 choices.

2. Kevin likes drawing. He takes a large piece of paper and draws on it every rectangle with positive integer
side lengths and perimeter at most 2017, with no two rectangles overlapping. Compute the total area of the
paper that is covered by a rectangle.

Proposed by Patrick Lin

Solution. If the rectangle has side lengths a and b, then the perimeter condition gives us a + b ≤ 1008,
and we are given a, b ≥ 1. Note that for a specific a+ b = k, we have that the sum of all rectangles satisfying
that is

k−1∑
a=1

a(k − a) =

(
k + 1

3

)
,

since we can think of choosing three objects out of (k + 1) by choosing the middle object at some index
1 ≤ i ≤ k − 1, which gives i choices for the first object and (k − i) for the third. Then we have∑

a+b≤1008

ab =

1008∑
k=2

∑
a+b=k

ab =

1008∑
k=2

(
k + 1

3

)
=

(
1010

4

)
.

3. In a certain game, the set {1, 2, . . . , 10} is partitioned into equally-sized sets A and B. In each of five
consecutive rounds, Alice and Bob simultaneously choose an element from A or B, respectively, that they
have not yet chosen; whoever chooses the larger number receives a point, and whoever obtains three points
wins the game. Determine the probability that Alice is guaranteed to win immediately after the set is initially
partitioned.

Proposed by Patrick Lin

Solution. First, we prove that Alice is guaranteed to win if and only if one of the following are met:

(a) {8, 9, 10} ⊂ A,

(b) A contains four of {6, 7, 8, 9, 10},
(c) A ⊂ {4, 5, 6, 7, 8, 9, 10}.

In the forwards direction, it is obvious that any one of these three conditions immediately implies that Alice
wins, since it is impossible for Bob to win three points. In the backwards direction, if none of these conditions
are met then B has at least one element in {8, 9, 10}, two elements in {6, 7, 8, 9, 10}, and three elements in
{4, 5, 6, 7, 8, 9, 10}, so it is possible for Bob to get three points.

Now we use inclusion-exclusion to find the number of sets A that satisfy one of these three conditions:

|a|+ |b|+ |c| − |a ∩ b| − |a ∩ c| − |b ∩ c|+ |a ∩ b ∩ c|

=

(
3

3

)(
7

2

)
+

(
5

4

)(
5

1

)
+

(
7

5

)
−
(

3

3

)(
2

1

)(
5

1

)
−
(

3

3

)(
4

2

)
−
(

5

4

)(
2

1

)
+

(
3

3

)(
2

1

)(
2

1

)
= 45.

The probability is hence 45

(10
5 )

= 5
28 .



Computer Science Tiebreaker Solutions
1. Cody has an unfair coin that flips heads with probability either 1

3 or 2
3 , but he doesn’t know which one it is.

Using this coin, what is the fewest number of independent flips needed to simulate a coin that he knows will
flip heads with probability 1

3?

Proposed by Patrick Lin

Solution. We claim the answer is 3 . Clearly we cannot accomplish this with 1 flip, and with two flips
we have outcomes HH, TT , HT , and TH. We can’t distinguish the probabilities of HH and TT , however,
and know only that the probability of the two flips being the same is 5

9 , and that the probability of them
being different is 4

9 . No combination of these gives 1
3 or 2

3 , so we cannot simulate a coin that flips heads with
probability 1

3 . Hence 2 flips does not suffice.

Now notice that the probability of getting three identical flips is 1
27 + 8

27 = 1
3 , and hence 3 flips is sufficient,

as desired.

2. Define

f(h, t) =

{
8h h = t

(h− t)2 h 6= t.

Cody plays a game with a fair coin, where he begins by flipping it once. At each turn in the game, if he has
flipped h heads and t tails and h + t < 6, he can choose either to stop and receive f(h, t) dollars or he can
flip the coin again; if h+ t = 6 then the game ends and he receives f(h, t) dollars. If Cody plays to maximize
expectancy, how much money, in dollars, can he expect to win from this game?

Proposed by Patrick Lin

Solution. Let Eht be the expected amount of money Cody can get after flipping h heads and t tails.
Clearly, for any h+ t = 6, we have Eht = f(h, t), and for h+ t < 6 we have

Eht = max(f(h, t),
1

2
(f(h+ 1, t) + f(h, t+ 1))).

Computing Eht for h+ t = 5, 4, . . . , 1 gives E01 = E10 = 57
4 , and hence E00 = 57

4 .

3. Let n = 2017 and x1, . . . , xn be boolean variables. An 7-CNF clause is an expression of the form φ1(xi1)+· · ·+
φ7(xi7), where φ1, . . . , φ7 are each either the function f(x) = x or f(x) = 1−x, and i1, i2, . . . , i7 ∈ {1, 2, . . . , n}.
For example, x1 +(1−x1)+(1−x3)+x2 +x4 +(1−x3)+x12 is a 7-CNF clause. What’s the smallest number
k for which there exist 7-CNF clauses f1, . . . , fk such that

f(x1, . . . , xn) := f1(x1, . . . , xn) · · · fk(x1, . . . , xn)

is 0 for all values of (x1, . . . , xn) ∈ {0, 1}n?

Proposed by Cody Johnson

Solution. The answer is 128 . If k = 128, then denoting by φ0 the map x 7→ x and φ1 the map x 7→ 1−x,
consider

f(x1, . . . , xn) :=
∏

(y1,...,y7)∈{0,1}7
(φy1(x1) + · · ·+ φy7(x7))

For each i, either φyi(xi) = 0 or φ1−yi(xi) = 0, so some term in f(x1, . . . , xn) makes this product 0. On the
other hand, if k < 128, then a random assignment of x1, . . . , xn satisfies an expected k · (1− (1/2)m) > k − 1
of the clauses by linearity of expectation. Therefore, some assignment satisfies k of the clauses.



Geometry Tiebreaker Solutions
1. Let ABCD be an isosceles trapezoid with AD ‖ BC. Points P and Q are placed on segments CD and DA

respectively such that AP ⊥ CD and BQ ⊥ DA, and point X is the intersection of these two altitudes.
Suppose that BX = 3 and XQ = 1. Compute the largest possible area of ABCD.

Proposed by David Altizio

Solution. Note that ∠PAD = 90◦ −∠PDA = 90◦ −∠BAQ = ∠ABQ, so 4XAQ ∼ 4ABQ. As a result,
we have QA2 = QX ·QB = 4 =⇒ QA = 2. This means that over all trapezoids ABCD, the angles that AB
and CD make with line AD are constant. Thus, the only factor determining the area of trapezoid ABCD
is the length of the line segment BC. Note that as BC increases in length, the point P moves up closer
and closer to C. This means that the maximum possible length of BC comes when P ≡ C. In other words,
∠ACD = 90◦ =⇒ ∠ABD = 90◦. Now by Altitude to Hypotenuse BQ2 = AQ ·QD, so QD = 8. Hence the
length of base BC is 6, and the area of the trapezoid is 1

2 · 4 · (10 + 6) = 32 .

2. Points A, B, and C lie on a circle Ω such that A and C are diametrically opposite each other. A line `
tangent to the incircle of 4ABC at T intersects Ω at points X and Y . Suppose that AB = 30, BC = 40,
and XY = 48. Compute TX · TY .

Proposed by David Altizio

Solution. Denote by O and I the centers of Ω and the incircle respectively, and let M denote the projection
of O onto XY . Note that the radius of Ω is 1

2

√
302 + 402 = 25 and MX = MY = 24, we have OM =√

252 − 242 = 7. Now IT = 10, and it is easy to compute OI = 5
√

5, so

MT 2 = OI2 − (TI −MO)2 = 125− 32 = 116.

Hence
TX · TY = XM2 −MT 2 = 242 − 116 = 460 .

3. Triangle ABC satisfies AB = 104, BC = 112, and CA = 120. Let ω and ωA denote the incircle and A-excircle
of 4ABC, respectively. There exists a unique circle Ω passing through A which is internally tangent to ω
and externally tangent to ωA. Compute the radius of Ω.

Proposed by David Altizio

Solution. Scale down to a 13−14−15 triangle. Let γ denote the circle with center A and radius
√
s(s− a),

where here s is the semiperimeter of 4ABC. Note that an inversion Φ about γ sends ω to ωA and vice versa.
As a result, Ω is sent under Φ to a line which is tangent to both ω and ωA; it’s not hard to see that this must
be line BC.

Now let Ω intersect AB and AC at X and Y respectively. Note that by the above analysis, Φ sends X to B
and Y to C. Thus, by the inversion distance formula,

XY =

(√
s(s− a)

)2

AB ·AC
·BC =

sa(s− a)

bc
,

from which

RΩ =
sa(s− a)

2bc sinA
=
as(s− a)

4K
=
a(s− a)

4r
.

Computation and remembering to scale back up gives a final answer of 49 .



Number Theory Tiebreaker Solutions



1. Let τ(n) denote the number of positive integer divisors of n. For example, τ(4) = 3. Find the sum of all
positive integers n such that 2τ(n) = n.

Proposed by Patrick Lin

Solution. Each factor of n comes in a pair of factors where one is at most
√
n. Thus, τ(n) ≤ 2

√
n and

we have the inequality n ≤ 4
√
n ⇒ n ≤ 16. Checking n = 1, 2, . . . , 16 yields n = 8, 12 as the only possible

solutions, and so the answer is 8 + 12 = 20.

2. Find the smallest three-digit divisor of the number

1 00 . . . 0︸ ︷︷ ︸
100 zeroes

1 00 . . . 0︸ ︷︷ ︸
100 zeroes

1.

Proposed by Cody Johnson

Solution. Let N = 10202 + 10101 + 1, and let ω be a root of x2 +x+ 1. Then since ωn = ωn mod 3, we have

ω202 + ω101 + 1 = ω + ω2 + 1 = 0 and ω2·202 + ω2·101 + 1 = ω2 + ω + 1 = 0,

so x2 + x + 1 | x202 + x101 + 1. As a result, 111 | N . Furthermore, if 100 ≤ n ≤ 110 and n | N , then
n 6∈ {100, 102, . . . , 110} since N is odd, and n 6= 105 since 5 - N . The remaining numbers 101, 103, 107, 109
are all prime, so we can check that they are indeed non-divisors.

Rewriting N as 10303−1
10101−1 , it suffices to show that 10303 − 1 6≡ 0 (mod p) for each of these p. We will use the

fact that if gcd(a, p) = 1 and ak ≡ 1 (mod p), then agcd(k,p−1) ≡ 1 (mod p). Since 303 = 3 · 101, we have
gcd(303, p− 1) ≤ 3 for each of these p. Thus, it suffices to show that 103 6≡ 1 (mod p) for any of these p; but

this is already obvious since 103 − 1 = 33 · 37. Thus the requested answer is 111 .

3. Say an integer polynomial is primitive if the greatest common divisor of its coefficients is 1. For example,
2x2 + 3x + 6 is primitive because gcd(2, 3, 6) = 1. Let f(x) = a2x

2 + a1x + a0 and g(x) = b2x
2 + b1x + b0,

with ai, bi ∈ {1, 2, 3, 4, 5} for i = 0, 1, 2. If N is the number of pairs of polynomials (f(x), g(x)) such that
h(x) = f(x)g(x) is primitive, find the last three digits of N .

Proposed by Andrew Kwon

Solution. We claim that h(x) = f(x)g(x) is primitive if and only if f(x), g(x) are primitive. We prove both
directions via contrapositive. If either f(x) or g(x) is not primitive, then some prime p divides all of its co-
efficients, and this p will also divide all of the coefficients of h(x). Thus, h(x) primitive⇒ f(x), g(x) primitive.

Now, if h is not primitive, then some prime p divides all of its coefficients. Suppose for the sake of contradic-
tion that some coefficients of f, g are not divisible by p, and say ai, bj are those with minimal index. Then,
a0, . . . , ai−1, b0, . . . bj−1 are all divisible by p. In h, the coefficient of the xi+j term is divisible by p and consists
of terms of the form ai−k, bj=k, ai+kbj−k for appropriately chosen values of k. However, these are all divisible
by p except ai, bj , and so the coefficient of xi+j is not divisible by p, a contradiction. Therefore, f(x), g(x)
are also not primitive, and f(x), g(x) primitive ⇒ h(x) primitive.

Now, f and g are determined by their coefficients, so it suffices to determine the number of triples of integers
(a, b, c) ∈ {1, 2, 3, 4, 5}3 satisfying gcd(a, b, c) = 1, as this determines the number of possible choices for f, g.



Noting that gcd(a, b, c) = gcd(gcd(a, b), c), we calculate∑
1≤a,b,c≤5

gcd(a,b,c)=1

1 =
∑

1≤a,b,c≤5

∑
d| gcd(gcd(a,b),c)

µ(d)

=
∑

1≤a,b,c≤5

∑
d| gcd(a,b)

d|c

µ(d)

=
∑

1≤a,b≤5

∑
d| gcd(a,b)

µ(d)
⌊

5
d

⌋
=
∑

1≤d≤5

µ(d)
⌊

5
d

⌋3
.

A simple calculation verifies that therefore the number of triples satisfying the desired conditions is 125− 8−
1− 0− 1 = 115. Therefore, the number of desired pairs of polynomials is 1152 ≡ 225 (mod 1000).

Remark. The fact that f(x), g(x) primitive ⇔ f(x)g(x) primitive is known as Gauss’ Lemma and has
numerous applications. For example, it is used to prove that an integer polynomial which is irreducible over
the rationals must be irreducible over the integers as well.


