
Computer Science Solutions Packet
1. What is the minimum number of times you have to take your pencil off the paper to draw the following figure

(the dots are for decoration)? You’re not allowed to draw over an edge twice.

Proposed by Cody Johnson

Solution. The answer is 5 . Note that if a vertex has odd degree, then it must be the endpoint of some
path (this is due to the what-goes-in-must-come-out rule of paths). There are 10 vertices of odd degree, so
there must be at least 5 paths in total:

Furthermore, we can do it in 5 paths, illustrated below by the varying thicknesses:

2. We are given the following function f , which takes a list of integers and outputs another list of integers. (Note
that here the list is zero-indexed.)

1: FUNCTION f(A)
2: FOR i = 1, . . . , length(A)− 1:
3: A[i]← A[A[i]]
4: A[0]← A[0]− 1
5: RETURN A



Suppose the list B is equal to [0, 1, 2, 8, 2, 0, 1, 7, 0]. In how many entries do B and f(B) differ?

Proposed by David Altizio

Solution. It is possible to go through the entire algorithm step by step, but we note a few observations
that make this easier.

• If A[i] = i, then the ith element of A is unchanged. This is because A[A[i]] = A[i], and so the algorithm
feeds it A[i], which by definition does not change.

• If A[i] = j for some j < i such that A[j] = j, then the ith element of A is also unchanged. This is
because A[A[i]] = A[j] = j, and so this element now contains j - which is what it contained before.

Thus the elements in positions 1, 2, 4, 6, and 7 do not change under this algorithm. On the other hand, note
that the leading zero changes by line 4, the 8 in position 3 becomes a 0, and the two zeroes in positions 5 and
8 turn into negative numbers. As a result, exactly 4 elements between B and f(B) are different.

3. In the following list of numbers (given in their binary representations), each number appears an even number
of times, except for one number that appears exactly three times. Find the number that appears exactly three
times. Leave the answer in its binary representation.

010111 000001 100000 011000 110101 100001
010100 011111 111001 010001 010100 101100
010001 011011 011111 011011 100000 000001
110011 001000 111101 100001 101100 110011
111111 011000 001000 101000 111111 101000
010111 100011 111001 100011 110101 011111
100000 010100 010001 101100 010111 011011
011000 111101 111111 100001 101000 100011
011011 010111 110011 111111 000001 010001
101000 111001 010100 110101 011000 110101
001000 000001 100000 111101 100011 001000
111001 110011 100001 011111 101100

Proposed by Cody Johnson

Solution. We count that 1 appears as the first bit of these numbers an odd number of times, therefore it
is unpaired so the first bit of the answer must be 1. Counting in a similar way for each successive bit, we have
that the answer is 111101 . The general algorithm is just to take the bitwise XOR of all of the numbers.

4. How many complete directed graphs with vertex set V = {1, 2, 3, 4, 5, 6} contain no 3-cycles?

Proposed by Cody Johnson

Solution. Let n = 6. We show that there is a vertex with all edges pointing towards it (a sink). Suppose
not, and let V be a vertex with the maximal number of edges pointing towards it. Then V → V ′ for some V ′,
and for each U → V , we must have U → V ′ else U → V → V ′ → U is a 3-cycle. Therefore, V ′ has strictly
more edges pointing towards it. There are n ways to label this sink, so we can delete it and multiply by the
number of ways to do this of size n− 1. Since there is 1 such graph of size 1, there are n! in total. Thus, the
answer is 720 .

5. Given a list A of n real numbers, the following algorithm, known as insertion sort, sorts the elements of A
from least to greatest.



1: FUNCTION IS(A)
2: FOR i = 0, . . . , n− 1:
3: j ← i
4: WHILE j > 0 & A[j − 1] > A[j] :
5: SWAP A[j], A[j − 1]
6: j ← j − 1
7: RETURN A

As A ranges over all permutations of {1, 2, . . . , n}, let f(n) denote the expected number of comparisons (i.e.,
checking which of two elements is greater) that need to be made when sorting A with insertion sort. Evaluate
f(13)− f(12).

Proposed by Kyle Gettig

Solution. Note that when i = k in the FOR loop, the first k elements of A are sorted and the (k + 1)th

element is moved to the left until it reaches a number less than it, at which point it is inserted and the
first k + 1 elements are sorted. Thus, the number of comparisons made at i = k is equal to the number
of elements with index less than k that are greater than A[k], plus an additional count for the first such
element less than A[k] (if it exists) since that determines when the WHILE loop halts. If such an element
doesn’t exist, the extra comparison isn’t added and the original A[k] is at the beginning of the list. Now,
let g(A) denote the number of elements of A that are less than any element preceding it. From above,
summing over all k we find f(n) = Inv(A) + n− g(A), where Inv(A) is the number of inversions in A.1 Thus,
E[f(n)] = E[Inv(A)] + n− E[g(A)].

It is not hard to see via linearity of expectation that E[Inv(A)] = 1
2

(
n
2

)
= n(n−1)

4 , since for any two elements of
A there is a 1

2 probability that they are in increasing order or decreasing order. Now it suffices to determine
E[g(A)], and furthermore we need only compute the probability that the kth smallest element of A is smaller
than any element preceding it. For the largest element, this is possible only if it is the first element in A. This
occurs with probability 1

n . For the second largest element, it must either be the first element, or the second
element with the largest element before it. This occurs with probability 1

n + 1
n(n−1) = 1

n−1 . Induction shows

that the probability the kth smallest element of A is 1
k , and then by linearity of expectation we conclude

E[g(A)] =
∑n

k=1
1
k = Hn, where Hn is the nth harmonic number.

Now, f(n) = n(n−1)
4 + n−Hn, and so f(n)− f(n− 1) = n+1

2 −
1
n . When n = 13, the desired value is

97

14
.

6. Define a self-balanced tree to be a tree such that for any node, the size of the left subtree is within 1 of the
size of the right subtree. How many balanced trees are there of size 2046?

Proposed by Cody Johnson

Solution. Let S(n) denote the number of self-balanced trees of size n. Note that S(2n + 1) = S(n)2

since a tree is self-balanced if and only if both subtrees of the root are self-balanced trees of size n. Also,
S(2n) = 2S(n)S(n− 1) since a tree is self-balanced if and only if both subtrees of the root are self-balanced
and either the left subtree is of size n − 1, and the right subtree is of size n, or the left subtree is of size n,
and the right subtree is of size n− 1. From these recurrences, it’s easy to show by induction that S(2n) = 2n

and S(2n − 1) = 1, and hence S(2n − 2) = 2n−1. Thus, the answer is S(2046) = S(211 − 2) = 210 = 1024 .

7. You are presented with a mystery function f : N2 → N which is known to satisfy

f(x+ 1, y) > f(x, y) and f(x, y + 1) > f(x, y)

for all (x, y) ∈ N2. I will tell you the value of f(x, y) for $1. What’s the minimum cost, in dollars, that it
takes to compute the 19th smallest element of {f(x, y) | (x, y) ∈ N2}? Here, N = {1, 2, 3, . . . } denotes the set
of positive integers.

Proposed by Cody Johnson

1That is, the number of pairs i < j with A[i] > A[j].



Solution. Let n = 19. First, note that if (a− 1) + (b− 1) > n,

f(a, b) > f(a− 1, b) > · · · > f(1, b) > f(1, b− 1) > · · · > f(1, 1)

so f(a, b) cannot be the nth smallest element. Furthermore, f(1, 1) cannot be the nth smallest element.

Now suppose a + b ≤ n + 2 and (a, b) 6= (1, 1). Without loss of generality, assume a 6= 1. Then consider the
function

f(x, y) =


1 + y x = 1 ∧ y ≤ n− 1

(x− a) + (y − b) + n+ 1 x ≥ a ∧ y ≥ b
x+ y x+ y ≤ n
x+ y + 1 x+ y ≥ n+ 1

It’s easy to verify that f satisfies the condition that

f(x+ 1, y), f(x, y + 1) > f(x, y)

for all (x, y) ∈ N2. Furthermore, the n−1 values 2, . . . , n appear as f(1, y) for 1 ≤ y ≤ n−1, so f(a, b) = n+1
is indeed the nth smallest element of {f(x, y) | (x, y) ∈ N2}. Finally, it’s unique, so no other (x, y) ∈ N2

satisfies f(x, y) = n+ 1. Therefore, all algorithms must check the value of f(a, b). Thus, all algorithms must

check at least (n+1)(n+2)
2 − 1 = n2+3n

2 values. Therefore, the answer is 19(22)
2 = 209 .

8. We have a collection of 1720 balls, half of which are black and half of which are white, aligned in a straight line.
Our task is to make the balls alternating in color along the line. The following greedy algorithm accomplishes
that task:

1: FOR i IN [2, 3, . . . , 2n]
2: IF balls i− 1 and i have the same color:
3: j ← smallest index greater than i for which balls i− 1 and j have different colors
4: swap balls i and j

Given a configuration C, let σ̂(C) denote the number of swaps the greedy algorithm takes, and let σ(C)
denote the minimum number of swaps actually necessary to perform the task. Find the maximum value over
all configurations C of σ̂(C)− σ(C).

Proposed by Cody Johnson and Victor Xu

Solution. Let there be 2n balls. We first claim σ̂(C)−σ(C) ≤ n−2. The greedy algorithm does at most n−1
swaps since, after each swap, if the iteration is at index i then the color of the balls at positions i and i+1 must
be different, and there are only 2n−2 potential spots where we could ever swap something (note that we never
swap at the end). Trivially, σ(C) ≥ 1 if C is not already alternating, and so σ̂(C)−σ(C) ≤ n− 1− 1 = n− 2,
as desired.

Now we show n − 1 swaps is achievable. Consider the configuration BBWBWBWB . . . BWBWW , where
the first two balls are the same color, then the colors alternate, and the last two balls are the same color. It’s
easy to verify that for this configuration we have σ̂(C)−σ(C) = n−2. Thus n−2 is the maximum achievable
value.

Since 2n = 1720, it follows that n− 2 = 858 .

9. Alice thinks of an integer 1 ≤ n ≤ 2048. Bob asks k true or false questions about Alice’s integer; Alice then
answers each of the questions, but she may lie on at most one question. What is the minimum value of k for
which Bob can guarantee he knows Alice’s integer after she answers?

Proposed by Patrick Lin

Solution. Equivalently, we consider error-correcting codes; note that integers between 1 and 2048 are 11-
bit integers, so we wish to find a minimal k such that we can find a map ϕ : {0, 1}11 → {0, 1}k where ϕ can
correct for at most one error (i.e. the possibility that Alice lies on a question). For each integer i ∈ {0, 1}11,
consider ϕ(i). If we wish for ϕ to be able to correct for one error, then all k strings that are of Hamming



distance 1 from ϕ(i) (i.e. they differ in one place) must be associated with i and no other integer. Hence,
each of the 2048 integers need to be associated with disjoint sets of size k + 1, for if they were not disjoint,
then we would not be able to uniquely recover the original integer. This gives the inequality

2048 · (k + 1) ≤ 2k,

since there are only 2k integers in {0, 1}k and we need at least 2048 · (k + 1) integers for there even to be a

chance of such a map ϕ existing. The equality case is at k = 15 .

The explicit construction of such a map ϕ is known as the Hamming (15,11) code. It is difficult to explain
succinctly but can be found at https://en.wikipedia.org/wiki/Hamming_code.

10. How many distinct spanning trees does the graph below have? Recall that a spanning tree of a graph G is a
subgraph of G that is a tree and containing all the vertices of G.

b1 b2 b3 b4 b5 b6

a1 a2 a3 a4 a5 a6

Proposed by Andrew Kwon

Solution. Note that the graph given is the complete bipartite graph on 12 vertices partitioned evenly;
we claim the answer is 610, and that in general for Kn,n the answer is n2n−2. Suppose the upper half of
the vertices are labelled a1, . . . , an and the lower half of the vertices are labelled b1, . . . , bn. We provide an
explicit bijection between spanning trees on Kn,n and sequences of the form ai1 , bj1 , ai2 , bj2 , . . . ain−1 , bjn−1 ,
where none of the terms are necessarily distinct. Evidently there are n2n−2 such sequences.

We refer to vertices of a spanning tree with degree 1 as leaves, and we claim that there must exist a leaf
among the ai as well as among the bi. Evidently a tree on 2n vertices has 2n− 1 edges, and therefore the sum
of all of the degrees of the vertices in the graph is 4n− 2. Also, the sum of the degrees of the ai and the sum
of the degrees of the bi are equal since every edge in the spanning tree connects some ai and some bj . Thus,
the sums of the degrees for each is 2n− 1, and it is impossible that deg ai,deg bi ≥ 2 for all 1 ≤ i ≤ n.

Now we describe an algorithm to encode spanning trees as sequences of the claimed form, as well as the inverse
algorithm to decode them.

To encode a tree as a sequence,

(a) Consider the bi1 with minimal index that is a leaf; it is connected to some ai1 , which we shall take to be
the first term of the sequence and delete bi1 along with its edge.

(b) Then, consider the aj1 with minimal index that is a leaf; it is connected to some bj1 , which we shall take
to be the next term of the sequence and delete aj1 along with its edge.

Note that our tree now has 2n − 2 vertices, and the above argument demonstrates we again have one leaf
among the upper and lower vertices. Thus we may repeat steps 1 and 2 on our smaller graph until there is
one edge left, then stop.

As the above procedure ends with 2 vertices, it deletes 2n − 2 vertices and generates a sequence of length
2n−2 of the desired form. Furthermore, leaves of the tree never appear in the sequence. With this we present
the inverse algorithm to construct a tree from a sequence.

Let A = {ai1 , . . . , ain−1
}, B = {bj1 , . . . , bjn−1

}. To decode a tree from a sequence ai1 , bj1 , . . . , ain−1
, bjn−1

, for
k = 1, . . . , n− 1,

https://en.wikipedia.org/wiki/Hamming_code


(a) Consider the bik with minimal index that is not in B. Add (aik , bik) to the tree and bik to B.

(b) Consider the ajk with minimal index that is not in A. Add (ajk , bjk) to the tree and ajk to A.

After iterating through k = 1, . . . , n− 1, add (ain−1
, bjn−1

) to the tree and stop.

As each step of the encoding algorithm is reversed by the corresponding step in the decoding algorithm,
e.g., step (a) of the encoding algorithm is undone by step (a) of the decoding algorithm, it is clear that these
procedures lead to a bijection between the spanning trees of Kn,n and strings of length 2n−2 from an alphabet
on n characters (where it suffices to consider only the indices of the ai, bi). Thus, in the case of K6,6 we find

there are 610 such spanning trees.
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