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Algebra Solutions Packet

1. The residents of the local zoo are either rabbits or foxes. The ratio of foxes to rabbits in the zoo is 2 : 3. After
10 of the foxes move out of town and half the rabbits move to Rabbitretreat, the ratio of foxes to rabbits is
13 : 10. How many animals are left in the zoo?

Proposed by Monica Pardeshi

Solution. Let 7 be the number of rabbits and f the number of foxes originally in the zoo. Then 3f = 2r
and £r = 10(f — 10). Solving for f, we have

39
13r="f=20f —200 = f=400.

Substituting back in gives r = 600, so the number of animals left is (400 — 10) + %2 = .

2. For nonzero real numbers = and y, define z oy = z:%; Compute

21 o (22 o (23 0.0 (22016 o 22017))) .

Proposed by Patrick Lin

Solution. Rewrite z o y as ﬁ Now note that for any z,y, z with zyz > 0,
z Ty
( ) 1 1
royoz)=1 T~ 1,11
st Tyt
vtz

Thus the entire expression becomes

1 22017
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3. Suppose P(z) is a quadratic polynomial with integer coefficients satisfying the identity
P(P(x)) — P(x)* = 2* + = + 2016
for all real . What is P(1)?
Proposed by David Altizio
Solution. Let P(x) = ax?® + bz + ¢, so that P(P(z)) = aP(x)? + bP(x) + ¢ and
P(P(x)) — P(x)* = (a — 1)P(x)* + bP(x) + c.

Since deg P = 2, deg P? = 4, so this expression will be a fourth-degree polynomial unless @ = 1. Hence
P(z) = 2% + bz + ¢, so the expression above simplifies to

bP(x) + ¢ = b(2® 4+ bx + ¢) + ¢ = bx® + b*x + (be + c).

From here equating coefficients gives b = 1 and ¢ = 1008, so P(z) = 22 + x + 1008 and P(1) =|1010 |.

4. Tt is well known that the the special mathematical constant e can be written in the form e = é + % + % 4+
With this in mind, determine the value of
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Express your answer in terms of e.

Proposed by Joshua Siktar

Solution. Write

= 2k: 2k + 1 = =1
Sy (G5 e e
J 5] = k= 2 k=2
The first sum comes out to 4(e — é) = 4e — 4, while the second come comes out to e — & — % =e—2. Thus

=(4de —4) + (e —2) = be — 6.

>

Adding back the j = 3 term (which is & = 3) yields a final answer of .

l
2

5. The set S of positive real numbers x such that

2z 3z
_ 1 —
) [5] e
can be written as S = J;Z, I;, where the I; are disjoint intervals of the form [a;,b;) = {z|a; < 2 < b;} and
b; < a;y1 for all 7 > 1. Find 230117(13 —a;).
Proposed by Andrew Kwon

Solution. Say the disjoint intervals I; are funky. Simple casework yields [1, %), 2, %), 3, %), [4,5) as the
only funky intervals in [0,5).! Furthermore, we note that

2(z+5) 3(z+5) 2x 3z
1=|—
B e R Y R
and so z is in a funky interval < x + 5 is in a funky interval. Therefore, all funky intervals are translations

of the funky intervals found in [0,5). It is easy to see then that 22016( ; —a;) = 3. 2008 = 1260, and

2
3782
3 |

b2017 — ag017 = % The final answer is

6. Suppose P is a quintic polynomial with real coefficients with P(0) = 2 and P(1) = 3 such that |z| =
whenever z is a complex number satisfying P(z) = 0. What is the smallest possible value of P(2) over all
such polynomials P?

Proposed by David Altizio

Solution. Note that complex roots of P must come in conjugate pairs. Since the degree of P is odd, P
must have one real root, and by the |z] = 1 condition this root must be either 1 or —1. However, P(1) # 0,
so —1 must be said root. Now let a, @, 8, and § be the remaining four roots. (This implicitly covers the real
case as well, since it’s impossible for one real root of P to be 1 and the other to be —1.) This implies that

P(z) = C(z+1)(z —a)(z —a)(z — B)(z — B)
=C(z+1)(2* = (a+a)z+aa)(z> — (B+P)z+ BB)
= C(z+1)(2% = 2R(a)z + 1) (2% = 2R(B)z + 1),

LA simple way to perform this casework systematically is as follows: define the function f: R — Z via

2x 3x
)= |—|+|—|—Llz].
f@) = | 2]+ |Z] - 1o
Note that this quantity increases by 1 at every multiple of % and % and decreases by 1 at every integer x. Thus, one can count how
many such increases and decreases are made and examine the places at which the function equals one.
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where we use a@ = |a|? = 1 and similar in the last step. For ease of typesetting, let a = 2R(a) and b = 2R(8),
so that P(z) = C(z+1)(2%2 —az+1)(22 = bz +1) for |a|,|b| < 2. Plugging in z = 0 gives C = 2, while plugging
in z =1 yields

3=2.22-a)(2-0) = (2-@(2-1;):%

It thus suffices to minimize
P(2)=2-3(22—2a+1)(22 =20+ 1) = 6(5 — 2a)(5 — 2b)

subject to the constraints given above.

Once again, for ease of typesetting set p =2 — a and ¢ =2 — b. Then pq = % and

(5—-2a)(5—-20)=(2p+1)(2¢+ 1) =4pqg+2(p+q)+1=4+2(p+q).

This means that we must minimize p + ¢q. Note that since |a| < 2 and |[b] < 2, p and ¢ are both nonnegative,
so we may apply the AM-GM inequality to obtain p 4+ ¢ > 2,/pq = v/3. Thus the smallest possible value of

P(2) is
6(5 —2a)(5—2b) =6 - [4+2(p+ q)] :.

Note that equality is achieved via

P(z)=2(z+1) (zQ— <2—\é§>z+1>

. Let a, b, and ¢ be complex numbers satisfying the system of equations

a L b n c
b+c¢ c+a a+b 7
2 b2 2
S A )
b+c c+a a—+b
3 3 3
o b ¢ _192.
b+c c+a a+b
Find abe.
Proposed by David Altizio
Solution. Let
a” b c’

E, =
b+c+c+a+a+b

for all nonnegative integers r. Note that
a7'+1 br+1 Cr-‘rl

Erp1+(a"+0"+c") = b+c+c+a+a+b+(ar+b’"+cr)

ar+1 b'r‘Jrl Cr+1
= +a" ) + +b" ) + +c
b+c c+a a+b
atl+ab+ac U 4+be+ba T 4ca+b
b+c c+a a+b

a]?" bT‘ '
(a+b+c)<b+c+c+a+a+b) =(a+b+c)E;.

This is this identity that will be the workhorse for our solution.
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Note that plugging in r = 1 gives 32+ (a+b+¢) =9(a+ b+ ¢), or a + b+ ¢ = 4. Similarly, note that the
r = 2 case gives 122 + (a® + b* +¢?) =32(a + b+ ) = 128 = a? + b? + ¢? = 6. Next, the r = 0 case yields

9+ 3 =4(-1 + 5= + ==)s and so =5 + 7= + == = 3. Now write
1 1 1
et e i ?
= (-agd-b)+(@d-ad-c)+{@-b(d—-c)=34-a)(4-b)4-c)
= 48 —8(a+b+c)+ (ab+ bc+ ca) = 3(64 — 16(a + b+ ¢) + 4(ab + bc + ca) — abc)

= 12(ab + bc + ca) — 3abc
= 11(ab + bc + ca) — 16 = 3abe.

Finally, recall that a + b+ c = 4 and a? + b + ¢ = 6 implies ab + bc + ca = 5, so
11(5) — 16 = 39 = 3abc =  abc=]13]

. Suppose aq, asg, ..., ajg are nonnegative integers such that

10 10
Zak =15 and Z ka, = 80.
k=1 k=1

Let M and m denote the maximum and minimum respectively of lec(il k2aj. Compute M — m.
Proposed by David Altizio

Solution. The key to this problem is the following trick: let m and k be integers between 1 and 10 inclusive.
Suppose (ay—1, Gm, ak, ax+1) are four elements of a tuple satisfying the given conditions. Replace this tuple
with

(am—l —Lam+1ar+1, Ak+1 — 1)

It’s easy to see that both equalities are still satisfied, but now

(m— 1) (am-1 — 1) + m*(am + 1) + k*(a, + 1) + (k + 1)*(agy1 — 1)
=V4+m?—(m—-17>+k%—(k+1)?
=V+2(m—k)—2,

where here V = (m — 1)%a,,_1 + m2a,, + k%ar + (k + 1)%ai, 1. Hence, as long as m < k, performing such an

operation will decrease the value of Zioﬂ k2ay. Conversely, if m — k > 1, such an operation will increase the
value of the requested quantity.

First we compute m. It is easy to see the minimum value of our expression comes when there exists a j such
that only a; and a4 are nonzero; otherwise, we could apply this operation with m — 1 the smallest index k
such that ax > 0 and n + 1 the largest such k£ to decrease Zi():l k2ay, even further. This j must satisfy

aj +ajp1 =15 and Jja; + (j+ 1)&j+1 = 80.
Note that the second equation becomes
j(aj + aj+1) +aj41 = 155 + aj+1 = 80.

Now remark that by integer bounding the only possible value of j is j = 5, which gives a;11 = 5. Hence
as = 10 and ag = 5, so
m =510+ 6 -5 = 430.

Computing M is similar, but the required conditions are a bit trickier. First remark that the system of
equations

ai + aig =15,
ay + 10(110 =80
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has unique solution (a1, a1g) = (79—0, %); these are not integers, and as such it is impossible for only a; and

a1p to be nonzero. With this in mind, we claim that the sum is minimized under the condition that
az +azg+---+ag =1

in other words, exactly one of these numbers is 1 and the rest are zeros. To see this, suppose the contrary.
Write each of as through ag as a sum of 1s (so for example, 2 = 1 + 1). Pick two of these ones, supposing
they come from a; and a; with j < k. Now by repeatedly applying the operation

(0,1,...,1,0) = (1,0,...,0,1),

we can force at least one of these ones out toward the edges to either a; or a;g. This means that the quantity
as + - -+ + ag decreases by at least one. The claim follows by an inductive argument on this quantity.

As such, in order for the maximum to be achieved, we need

ay + aio = 14,
ay + 10@10 =80—k

for some integer 2 < k < 9. Subtracting the equations and taking mod 9 yields
0=9190=66—k=3—-%k (mod9) = k=23.
Now solving the resulting system gives (a1, a19) = (7,7), so
M=1*743%-1+10%-7="T16
and the requested answer is 716 — 430 = .

9. Define a sequence {a,}>%; via a; = 1 and a,41 = an, + |/an] for all n > 1. What is the smallest N such
that ay > 20177

Proposed by Andrew Kwon

Solution. We first claim that all powers of 4 appear in this sequence, and that these are the only perfect
squares in this sequence. Evidently a; = 1,a4 = 4, and so the claim is not false yet.

In general, for k > 2 suppose aj, = n? +r with 1 <r <n.?2 Then, ayyo =n?+2n+r = (n+1)?>+(r—1), and
inductively we find ag;2, = (n + 7)2. Furthermore, none of the terms between ay, a2, are perfect squares.
In particular, if ar_; = n?, then a;, = n? +n and ap, 2, = 4n>. As we have verified that the first perfect
squares in our sequence are 1 and 4, the only perfect squares in our sequence are powers of 4.

It is not hard to see that |,/a, | will attain all positive integer values, but we claim that it will attain powers
of 2 three times, and all other values twice. Indeed, if n? + n < a; < n? + 2n for some n, then we must
have n? < ax—1 < n? +n, and so ax_1,a; € [n?, (n + 1)?). This corresponds to |\/ay—1], [\/ax] = n. The
only way for three terms ay_1,ax, a1 to be in the interval [n?, (n + 1)2) is if a1 = n? ax, = n? +n, and
ak+1 = n? + 2n. This is precisely when |/ax—1, [\/ax], |\/ars1]) are powers of 2.

Now we proceed by consideration of adding consecutive differences. We consider
any =2(1+2+...+k) +(1+2+...+271) > 2017

or
an =2(1+2+...+k) +(1+2+...+2° > 2017,

where ¢ is the unique integer such that 2¢ < k < 2! and we add 1 + ...+ 21 or 1 4+ ... + 2¢ because
those differences appear three times rather than twice, but we do not yet know whether the third contribution

2We need not seriously consider the case n +1 < r < 2n, as 41 = n?2+4+n+r,and when 1 <7 <n we haven+1<n+r < 2n.
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10.

of 2¢ is necessary or not. Now the above expressions are equivalent to k? + k + 2¢ and k% + k + 2¢+1. As
43-44 = 1892,44 - 45 = 1980 we find k = 44 suffices to guarantee ay = 2044 > 2017 when we include 2¢ = 32.
To determine the value of N, we use the fact that we have added 2 - 44 4+ 6 consecutive differences, and so
cumulatively we have calculated the 95" term of the sequence, and N = is minimal.

Let ¢ denote the largest possible real number such that there exists a nonconstant polynomial P with
P(2*) = P(z — ¢)P(z +¢)

for all z. Compute the sum of all values of P(%) over all nonconstant polynomials P satisfying the above
constraint for this c.

Proposed by David Altizio
Solution. We claim that ¢ = +.

2
First note that if « is a root of P, then plugging in z = a + ¢ yields

P((a 4 ¢)?) = P(a)P(a + 2¢) = 0,

so that (o + ¢)? is a root of P as well. Similarly, (o — ¢)? must also be a root of P.

Now suppose ¢ > %, and let z be a possible root of P. Define a sequence of complex numbers {z;}72, such

that zgp = z and such that 25,1 is either equal to (zx + ¢)? or (zx — ¢)?. I claim it is always possible to choose
a sequence with the property that the sequence {|zx|}32, is strictly increasing. To see this, recall by the
Parallelogram Law,

|z — > + |2 + ¢|* = 2(]2)* + &2).

It thus follows that one of |z — ¢|? and |z + ¢|> must be at least |z|? + ¢? (else the entire sum would be too
small), so we can choose z1 such that |z,41] > |2x|? + ¢2. But note that

2
1
|27+ > 2| <= <z| — ) +c? >

which is always true for ¢ > 1. Thus |zx41| > |21, as desired. It follows that {z};2 is an infinite sequence
of roots of P, which is a contradiction.

It suffices to classify all polynomials satisfying the equation when ¢ = % To do this, remark that there are
two equality cases in the above analysis. The first occurs in the choice of zy41; equality here occurs when
|z — ¢|?> = |z + ¢|?, or when z is purely imaginary. The second equality case occurs in completing the square.

For ¢ = }, we need (|z| —1)2 =0, i.e. |2| = 3. It follows that 1i and —1i are the only possible roots of P, and

furthermore it is easy to see that these roots must occur with equal multiplicity. Indeed, taking P(z) = 2%+ i

() (6
(el (o)

— 22+} 2_22:Z4+1:P(22)
2 4 ’

Hence P(z) = (2% 4 )™ for some integer n > 1, and it follows that the sum of all possible values of P(%) is

1 1\" 13\" 13
(5+1) =X (a) =\

n>1




