
Algebra Solutions Packet
1. The residents of the local zoo are either rabbits or foxes. The ratio of foxes to rabbits in the zoo is 2 : 3. After

10 of the foxes move out of town and half the rabbits move to Rabbitretreat, the ratio of foxes to rabbits is
13 : 10. How many animals are left in the zoo?

Proposed by Monica Pardeshi

Solution. Let r be the number of rabbits and f the number of foxes originally in the zoo. Then 3f = 2r
and 13

2 r = 10(f − 10). Solving for f , we have

13r =
39

2
f = 20f − 200 =⇒ f = 400.

Substituting back in gives r = 600, so the number of animals left is (400− 10) + 600
2 = 690 .

2. For nonzero real numbers x and y, define x ◦ y = xy
x+y . Compute

21 ◦
(
22 ◦

(
23 ◦ · · · ◦

(
22016 ◦ 22017

)))
.

Proposed by Patrick Lin

Solution. Rewrite x ◦ y as 1
1
x+ 1

y

. Now note that for any x, y, z with xyz ≥ 0,

x ◦ (y ◦ z) =
1

1
x + 1

1
1
y

+ 1
z

=
1

1
x + 1

y + 1
z

.

Thus the entire expression becomes

1
1
2 + 1

22 + · · ·+ 1
22017

=
22017

22017 − 1
.

3. Suppose P (x) is a quadratic polynomial with integer coefficients satisfying the identity

P (P (x))− P (x)2 = x2 + x+ 2016

for all real x. What is P (1)?

Proposed by David Altizio

Solution. Let P (x) = ax2 + bx+ c, so that P (P (x)) = aP (x)2 + bP (x) + c and

P (P (x))− P (x)2 = (a− 1)P (x)2 + bP (x) + c.

Since degP = 2, degP 2 = 4, so this expression will be a fourth-degree polynomial unless a = 1. Hence
P (x) = x2 + bx+ c, so the expression above simplifies to

bP (x) + c = b(x2 + bx+ c) + c = bx2 + b2x+ (bc+ c).

From here equating coefficients gives b = 1 and c = 1008, so P (x) = x2 + x+ 1008 and P (1) = 1010 .

4. It is well known that the the special mathematical constant e can be written in the form e = 1
0! + 1

1! + 1
2! + · · · .

With this in mind, determine the value of
∞∑
j=3

j

b j2c!
.



Express your answer in terms of e.

Proposed by Joshua Siktar

Solution. Write
∞∑
j=4

j⌊
j
2

⌋
!

=

∞∑
k=2

(
2k

k!
+

2k + 1

k!

)
=

∞∑
k=2

4

(k − 1)!
+

∞∑
k=2

1

k!
.

The first sum comes out to 4(e− 1
0! ) = 4e− 4, while the second come comes out to e− 1

0! −
1
1! = e− 2. Thus

∞∑
j=4

j⌊
j
2

⌋
!

= (4e− 4) + (e− 2) = 5e− 6.

Adding back the j = 3 term (which is 3
1! = 3) yields a final answer of 5e− 3 .

5. The set S of positive real numbers x such that⌊
2x

5

⌋
+

⌊
3x

5

⌋
+ 1 = bxc

can be written as S =
⋃∞

j=1 Ij , where the Ii are disjoint intervals of the form [ai, bi) = {x | ai ≤ x < bi} and

bi ≤ ai+1 for all i ≥ 1. Find
∑2017

i=1 (bi − ai).

Proposed by Andrew Kwon

Solution. Say the disjoint intervals Ij are funky. Simple casework yields [1, 53 ), [2, 52 ), [3, 103 ), [4, 5) as the
only funky intervals in [0, 5).1 Furthermore, we note that⌊

2(x+ 5)

5

⌋
+

⌊
3(x+ 5)

5

⌋
+ 1 =

⌊
2x

5

⌋
+

⌊
3x

5

⌋
+ 6,

and so x is in a funky interval ⇔ x + 5 is in a funky interval. Therefore, all funky intervals are translations
of the funky intervals found in [0, 5). It is easy to see then that

∑2016
i=1 (bi − ai) = 5

2 ·
2016
4 = 1260, and

b2017 − a2017 = 2
3 . The final answer is 3782

3 .

6. Suppose P is a quintic polynomial with real coefficients with P (0) = 2 and P (1) = 3 such that |z| = 1
whenever z is a complex number satisfying P (z) = 0. What is the smallest possible value of P (2) over all
such polynomials P?

Proposed by David Altizio

Solution. Note that complex roots of P must come in conjugate pairs. Since the degree of P is odd, P
must have one real root, and by the |z| = 1 condition this root must be either 1 or −1. However, P (1) 6= 0,
so −1 must be said root. Now let α, ᾱ, β, and β̄ be the remaining four roots. (This implicitly covers the real
case as well, since it’s impossible for one real root of P to be 1 and the other to be −1.) This implies that

P (z) = C(z + 1)(z − α)(z − ᾱ)(z − β)(z − β̄)

= C(z + 1)(z2 − (α+ ᾱ)z + αᾱ)(z2 − (β + β̄)z + ββ̄)

= C(z + 1)(z2 − 2<(α)z + 1)(z2 − 2<(β)z + 1),

1A simple way to perform this casework systematically is as follows: define the function f : R→ Z via

f(x) =

⌊
2x

5

⌋
+

⌊
3x

5

⌋
− bxc .

Note that this quantity increases by 1 at every multiple of 5
2

and 5
3

and decreases by 1 at every integer x. Thus, one can count how
many such increases and decreases are made and examine the places at which the function equals one.



where we use αᾱ = |α|2 = 1 and similar in the last step. For ease of typesetting, let a = 2<(α) and b = 2<(β),
so that P (z) = C(z+1)(z2−az+1)(z2− bz+1) for |a|, |b| ≤ 2. Plugging in z = 0 gives C = 2, while plugging
in z = 1 yields

3 = 2 · 2(2− a)(2− b) =⇒ (2− a)(2− b) =
3

4
.

It thus suffices to minimize

P (2) = 2 · 3(22 − 2a+ 1)(22 − 2b+ 1) = 6(5− 2a)(5− 2b)

subject to the constraints given above.

Once again, for ease of typesetting set p = 2− a and q = 2− b. Then pq = 3
4 and

(5− 2a)(5− 2b) = (2p+ 1)(2q + 1) = 4pq + 2(p+ q) + 1 = 4 + 2(p+ q).

This means that we must minimize p+ q. Note that since |a| ≤ 2 and |b| ≤ 2, p and q are both nonnegative,
so we may apply the AM-GM inequality to obtain p + q ≥ 2

√
pq =

√
3. Thus the smallest possible value of

P (2) is

6(5− 2a)(5− 2b) = 6 · [4 + 2(p+ q)] = 24 + 12
√

3 .

Note that equality is achieved via

P (z) = 2(z + 1)

(
z2 −

(
2−
√

3

2

)
z + 1

)2

.

7. Let a, b, and c be complex numbers satisfying the system of equations

a

b+ c
+

b

c+ a
+

c

a+ b
= 9,

a2

b+ c
+

b2

c+ a
+

c2

a+ b
= 32,

a3

b+ c
+

b3

c+ a
+

c3

a+ b
= 122.

Find abc.

Proposed by David Altizio

Solution. Let

Er =
ar

b+ c
+

br

c+ a
+

cr

a+ b

for all nonnegative integers r. Note that

Er+1 + (ar + br + cr) =
ar+1

b+ c
+
br+1

c+ a
+
cr+1

a+ b
+ (ar + br + cr)

=

(
ar+1

b+ c
+ ar

)
+

(
br+1

c+ a
+ br

)
+

(
cr+1

a+ b
+ cr

)
=
ar+1 + arb+ arc

b+ c
+
br+1 + brc+ bra

c+ a
+
cr+1 + cra+ crb

a+ b

= (a+ b+ c)

(
ar

b+ c
+

br

c+ a
+

cr

a+ b

)
= (a+ b+ c)Er.

This is this identity that will be the workhorse for our solution.



Note that plugging in r = 1 gives 32 + (a + b + c) = 9(a + b + c), or a + b + c = 4. Similarly, note that the
r = 2 case gives 122 + (a2 + b2 + c2) = 32(a+ b+ c) = 128 =⇒ a2 + b2 + c2 = 6. Next, the r = 0 case yields
9 + 3 = 4( 1

a+b + 1
b+c + 1

c+a ), and so 1
a+b + 1

b+c + 1
c+a = 3. Now write

1

4− a
+

1

4− b
+

1

4− c
= 3

=⇒ (4− a)(4− b) + (4− a)(4− c) + (4− b)(4− c) = 3(4− a)(4− b)(4− c)
=⇒ 48− 8(a+ b+ c) + (ab+ bc+ ca) = 3(64− 16(a+ b+ c) + 4(ab+ bc+ ca)− abc)

= 12(ab+ bc+ ca)− 3abc

=⇒ 11(ab+ bc+ ca)− 16 = 3abc.

Finally, recall that a+ b+ c = 4 and a2 + b2 + c2 = 6 implies ab+ bc+ ca = 5, so

11(5)− 16 = 39 = 3abc =⇒ abc = 13 .

8. Suppose a1, a2, . . ., a10 are nonnegative integers such that

10∑
k=1

ak = 15 and

10∑
k=1

kak = 80.

Let M and m denote the maximum and minimum respectively of
∑10

k=1 k
2ak. Compute M −m.

Proposed by David Altizio

Solution. The key to this problem is the following trick: let m and k be integers between 1 and 10 inclusive.
Suppose (am−1, am, ak, ak+1) are four elements of a tuple satisfying the given conditions. Replace this tuple
with

(am−1 − 1, am + 1, ak + 1, ak+1 − 1).

It’s easy to see that both equalities are still satisfied, but now

(m− 1)2(am−1 − 1) +m2(am + 1) + k2(ak + 1) + (k + 1)2(ak+1 − 1)

= V +m2 − (m− 1)2 + k2 − (k + 1)2

= V + 2(m− k)− 2,

where here V = (m− 1)2am−1 +m2am + k2ak + (k + 1)2ak+1. Hence, as long as m ≤ k, performing such an

operation will decrease the value of
∑10

k=1 k
2ak. Conversely, if m− k ≥ 1, such an operation will increase the

value of the requested quantity.

First we compute m. It is easy to see the minimum value of our expression comes when there exists a j such
that only aj and aj+1 are nonzero; otherwise, we could apply this operation with m− 1 the smallest index k

such that ak > 0 and n+ 1 the largest such k to decrease
∑10

k=1 k
2ak even further. This j must satisfy

aj + aj+1 = 15 and jaj + (j + 1)aj+1 = 80.

Note that the second equation becomes

j(aj + aj+1) + aj+1 = 15j + aj+1 = 80.

Now remark that by integer bounding the only possible value of j is j = 5, which gives aj+1 = 5. Hence
a5 = 10 and a6 = 5, so

m = 52 · 10 + 62 · 5 = 430.

Computing M is similar, but the required conditions are a bit trickier. First remark that the system of
equations {

a1 + a10 = 15,

a1 + 10a10 = 80



has unique solution (a1, a10) = (70
9 ,

65
9 ); these are not integers, and as such it is impossible for only a1 and

a10 to be nonzero. With this in mind, we claim that the sum is minimized under the condition that

a2 + a3 + · · ·+ a9 = 1;

in other words, exactly one of these numbers is 1 and the rest are zeros. To see this, suppose the contrary.
Write each of a2 through a9 as a sum of 1s (so for example, 2 = 1 + 1). Pick two of these ones, supposing
they come from aj and ak with j ≤ k. Now by repeatedly applying the operation

(0, 1, . . . , 1, 0) 7→ (1, 0, . . . , 0, 1),

we can force at least one of these ones out toward the edges to either a1 or a10. This means that the quantity
a2 + · · ·+ a9 decreases by at least one. The claim follows by an inductive argument on this quantity.

As such, in order for the maximum to be achieved, we need{
a1 + a10 = 14,

a1 + 10a10 = 80− k

for some integer 2 ≤ k ≤ 9. Subtracting the equations and taking mod 9 yields

0 ≡ 9a10 ≡ 66− k ≡ 3− k (mod 9) =⇒ k = 3.

Now solving the resulting system gives (a1, a10) = (7, 7), so

M = 12 · 7 + 32 · 1 + 102 · 7 = 716

and the requested answer is 716− 430 = 286 .

9. Define a sequence {an}∞n=1 via a1 = 1 and an+1 = an + b√anc for all n ≥ 1. What is the smallest N such
that aN > 2017?

Proposed by Andrew Kwon

Solution. We first claim that all powers of 4 appear in this sequence, and that these are the only perfect
squares in this sequence. Evidently a1 = 1, a4 = 4, and so the claim is not false yet.

In general, for k ≥ 2 suppose ak = n2 + r with 1 ≤ r ≤ n.2 Then, ak+2 = n2 + 2n+ r = (n+ 1)2 + (r−1), and
inductively we find ak+2r = (n+ r)2. Furthermore, none of the terms between ak, ak+2r are perfect squares.
In particular, if ak−1 = n2, then ak = n2 + n and ak+2n = 4n2. As we have verified that the first perfect
squares in our sequence are 1 and 4, the only perfect squares in our sequence are powers of 4.

It is not hard to see that b√anc will attain all positive integer values, but we claim that it will attain powers
of 2 three times, and all other values twice. Indeed, if n2 + n ≤ ak ≤ n2 + 2n for some n, then we must
have n2 ≤ ak−1 ≤ n2 + n, and so ak−1, ak ∈ [n2, (n + 1)2). This corresponds to b√ak−1c, b

√
akc = n. The

only way for three terms ak−1, ak, ak+1 to be in the interval [n2, (n + 1)2) is if ak−1 = n2, ak = n2 + n, and
ak+1 = n2 + 2n. This is precisely when b√ak−1c, b

√
akc, b

√
ak+1c are powers of 2.

Now we proceed by consideration of adding consecutive differences. We consider

aN = 2(1 + 2 + . . .+ k) + (1 + 2 + . . .+ 2`−1) > 2017

or
aN = 2(1 + 2 + . . .+ k) + (1 + 2 + . . .+ 2`) > 2017,

where ` is the unique integer such that 2` ≤ k < 2`+1 and we add 1 + . . . + 2`−1 or 1 + . . . + 2` because
those differences appear three times rather than twice, but we do not yet know whether the third contribution

2We need not seriously consider the case n + 1 ≤ r ≤ 2n, as ak+1 = n2 + n + r, and when 1 ≤ r ≤ n we have n + 1 ≤ n + r ≤ 2n.



of 2` is necessary or not. Now the above expressions are equivalent to k2 + k + 2` and k2 + k + 2`+1. As
43 · 44 = 1892, 44 · 45 = 1980 we find k = 44 suffices to guarantee aN = 2044 > 2017 when we include 2` = 32.
To determine the value of N , we use the fact that we have added 2 · 44 + 6 consecutive differences, and so
cumulatively we have calculated the 95th term of the sequence, and N = 95 is minimal.

10. Let c denote the largest possible real number such that there exists a nonconstant polynomial P with

P (z2) = P (z − c)P (z + c)

for all z. Compute the sum of all values of P ( 1
3 ) over all nonconstant polynomials P satisfying the above

constraint for this c.

Proposed by David Altizio

Solution. We claim that c = 1
2 .

First note that if α is a root of P , then plugging in z = α+ c yields

P ((α+ c)2) = P (α)P (α+ 2c) = 0,

so that (α+ c)2 is a root of P as well. Similarly, (α− c)2 must also be a root of P .

Now suppose c > 1
2 , and let z be a possible root of P . Define a sequence of complex numbers {zk}∞k=0 such

that z0 = z and such that zk+1 is either equal to (zk + c)2 or (zk − c)2. I claim it is always possible to choose
a sequence with the property that the sequence {|zk|}∞k=0 is strictly increasing. To see this, recall by the
Parallelogram Law,

|z − c|2 + |z + c|2 = 2(|z|2 + c2).

It thus follows that one of |z − c|2 and |z + c|2 must be at least |z|2 + c2 (else the entire sum would be too
small), so we can choose zk+1 such that |zk+1| ≥ |zk|2 + c2. But note that

|z|2 + c2 > |z| ⇐⇒
(
|z| − 1

2

)2

+ c2 >
1

4
,

which is always true for c > 1
2 . Thus |zk+1| > |zk|, as desired. It follows that {zk}∞k=0 is an infinite sequence

of roots of P , which is a contradiction.

It suffices to classify all polynomials satisfying the equation when c = 1
2 . To do this, remark that there are

two equality cases in the above analysis. The first occurs in the choice of zk+1; equality here occurs when
|z − c|2 = |z + c|2, or when z is purely imaginary. The second equality case occurs in completing the square.
For c = 1

2 , we need (|z|− 1
2 )2 = 0, i.e. |z| = 1

2 . It follows that 1
2 i and − 1

2 i are the only possible roots of P , and
furthermore it is easy to see that these roots must occur with equal multiplicity. Indeed, taking P (z) = z2+ 1

4 ,
we see that

P

(
z − 1

2

)
P

(
z +

1

2

)
=

((
z − 1

2

)2

+
1

4

)((
z +

1

2

)2

+
1

4

)

=

(
z2 − z +

1

2

)(
z2 + z +

1

2

)
=

(
z2 +

1

2

)2

− z2 = z4 +
1

4
= P (z2).

Hence P (z) = (z2 + 1
4 )n for some integer n ≥ 1, and it follows that the sum of all possible values of P ( 1

3 ) is

∑
n≥1

(
1

9
+

1

4

)n

=
∑
n≥1

(
13

36

)n

=
13

23
.


