
1. Do not look at the test before the proctor starts the round.

2. This test consists of several problems, some of which are short-answer and some of which require
proofs.

3. Answers should be written and clearly labeled on sheets of blank paper. Each numbered problem
should be on its own sheet. If you have multiple pages, number them as well (e.g. 1/3, 2/3).

4. Write your team ID on the upper-right corner and the problem and page number of the problem
whose solution you are writing on the upper-left corner on each page you submit. Papers missing
these will not be graded. Problems with more than one submission will not be graded.

5. Write legibly. Illegible handwriting will not be graded.

6. In your solution for any given problem, you may assume the results of previous problems, even if
you have not solved them. You may not do the same for later problems.

7. Problems are not ordered by difficulty. They are ordered by progression of content.

8. No computational aids other than pencil/pen are permitted.

9. If you believe that the test contains an error, submit your protest in writing to Porter 100.

1 Introduction

When working with computation on an abstract level, it is helpful to develop mathematical models for
machines. There are several mathematical models which work, but they all have similar characteristics:

• They must be simple to understand.

• They must encompass many different computational tasks (though not necessarily all).

• They must be hardware independent. (Theoretical computer scientists don’t really care about
technical limitations; they instead care about which types of problems can be solved by a computer.)

One such model of computation is known as a Deterministic Finite Automaton (DFA). DFAs are
simplistic models of computation that still have deep theories and implications for computational theories
in the real world. In this power round, we will explore the underlying theory behind these mysterious
models, solving interesting problems and proving fundamental results in automata theory along the way.

2 Introduction to Languages

Before we begin, we introduce the notation we shall be using to designate inputs to DFAs. This section
is mainly just definitions - manipulating languages will not come until later sections.

Definition 2.1. An alphabet is any finite, non-empty set of symbols. We often denote an alphabet by
Σ. Examples of alphabets are Σ1 = {0, 1} and Σ2 = {a, b, c}.

Definition 2.2. A string is any finite sequence of elements from an alphabet. For any string x, |x|
denotes the number of characters in the string. The empty string ε represents the empty sequence.

Definition 2.3. For an alphabet Σ, the notation Σ∗ denotes the set of all strings over Σ. For example,
{0, 1}∗ = {ε, 0, 1, 00, 01, 10, 11, 100, . . . }.

Definition 2.4. A language over an alphabet Σ is any subset of Σ∗.

Now that we have some basic notation, it’s time to move on to the meat of this power round.

3 DFAs

Definition 3.1. A deterministic finite automaton (DFA) is a mechanism that takes in a string as an
input and either accepts or rejects it. This is analogous to, say, a boolean function which takes in a string
and outputs either true (i.e. accepts the string) or false (i.e. rejects it).

When drawn, DFAs look like a bunch of arrows and circles. Here is an example of a DFA:

q0start q1

q2

q3

0,1

0

1

0,1

0,1

Page 2

Each circle represents a state. A state with two circles is an accepting state, which means the DFA
will accept if the string ends up there. Formally, a DFA over an alphabet Σ is defined as a finite set of
states (with one start state and some of which can be accepting states), each with an arrow pointing to
another state for each element of Σ. For a DFA, the language that it admits is the language of all strings
over Σ that accept when inputted into the DFA.

To read a DFA, start with the string in the state indicated by the “start” arrow. Look at the first
letter in the string, then follow the arrow corresponding to that letter to the next state. From that state,
follow the arrow corresponding to the second letter of the string, and so on until the string has no more
letters. At that point, the DFA accepts if you are in an accepting state and rejects otherwise.

For example, let’s input the string 1011 into the above DFA. It starts at q0. The first letter is 1, so
move to q1. The second letter is 0 so move to q2. The third letter is 1 so move to q2. The fourth letter is
1, so move to q2. There are no more letters left, and we are in an accepting state, so this DFA will accept
the string 1011.

1. [2] Consider the following DFA:

q0start q1 q2 q3
1

0

0

1

0,1
0,1

For each of the following strings, indicate whether the DFA accepts or rejects:

string accepts rejects

0000

1111

0010

0110

0100

2. Consider the following DFAs. In simplest terms, what languages would they accept?

(a) [2] See below.

q0start

q1

q2

q3

0

1

1

0

0

1

0,1

Page 3

(b) [4] See below.

q0start

q1

q2

q3

q4

q5

0

1

0

10

1

0
1

0 1

0,1

3. For each of the problems below, construct a DFA which accepts the given language. You do not
need to prove that your submission works.

(a) [2] L1 = {w ∈ {0, 1}∗ |w = 001}
(b) [2] L2 = {w ∈ {a, b}∗ |w has even length}
(c) [6] L3 = {w ∈ {0, 1}∗ \ ε |w when interpreted as an integer in binary is divisible by 5}

4. [5] Let D be a DFA with exactly three states. Suppose this DFA accepts the string 000 but not the
empty string ε. What is the smallest positive integer k > 3 such that D must also accept 0k? (Here,
exponentiation is shorthand for repetition; for example, 04 represents the string 0000.) Prove that
your k is minimal.

4 Languages and Regularity

It is useful to understand both the capabilities and limitations of any model of computation such as a
DFA. This roughly translates to determining which problems either do not have solutions or have solutions
which extend beyond the scope of the aforementioned model of computation. This next section, as well
as the ones which succeed it, help develop the theory behind what these DFA machines can actually do.

Definition 4.1. We say that a language Σ∗ is regular if there exists a DFA D which accepts all words
w ∈ Σ∗ and rejects all words w0 6∈ Σ∗. If this is the case, we say that D decides the language or is a
decider for the language. (Either phrase is fine.)

As an example, the language

L = {x ∈ {0, 1}∗ | the second digit from the left is a 0}

is regular, because the DFA pictured in the previous section is a decider for L.

1. [3] Is any language consisting of a finite number of words (sometimes called a “finite language”)
regular?

Determining whether a language is regular is somewhat straightforward: construct a DFA which
decides it! This technique is the basis for almost all problems which ask you to show that some language
is regular. Proving a language is irregular, however, is a bit more difficult; one has to come up with a
precise argument that works against all possible DFAs. The key to doing this relies in the ‘F’ in DFA.
The following problem highlights the general technique.

Page 4

2. Consider the language L = {0n1n : n ∈ N}.

(a) [2] Suppose D is a DFA with n states which decides L. Furthermore, let S be a set of consisting
of k words w ∈ {0, 1}∗. What is the smallest value of k such that for all such sets S, there
exist two words in S which land in the same state at the end of the simulation? Provide brief
justification.

(b) [4] Using this, show that L is irregular, i.e. show that D does not exist.

Before we move on to the main meat of the section regarding regularity (the problems), an interlude.
Up until now, we have been informal about what exactly a DFA is in a mathematical sense. We have
refrained from doing this in order to prevent definitions from interfering with intution. However, some of
the problems from this point forward benefit greatly from formal notation, so we will introduce it here.

Definition 4.2. Formally, a deterministic finite automaton M is a 5-tuple

M = (Q,Σ, δ, q0, F),

where

• Q is the (finite) set of states of M ;

• Σ is the alphabet of the strings inputted to and processed by M ;

• δ : Q × Σ 7→ Q is a transition function which details exactly how the states and alphabet function
with each other (in other words which arrows point to which states);

• q0 ∈ Q is the start state of M ;

• F ⊆ Q is the set of accepting states of M .

While formal notation is not necessary for completing the rest of this Power Round, it may help make
some of the solutions easier to write.

3. [4] Show that the language {12n |n ∈ N} is irregular.

4. The above two problems demonstrate the usefulness of elementary combinatorics to prove results
regarding regularity. Using these basic ideas, we can construct very powerful results in automata
theory. One of the most fundamental is stated below.

Theorem 4.1 (Pumping Lemma). Let L be a regular language. Then there exists an integer P ≥ 1
such that any w ∈ L with |w| ≥ P can be written as w = xyz with y not equal to the empty string
such that

• |xy| ≤ P , and

• for all integers i ≥ 0, the string xyiz is also in L.

In this problem we give a proof of the lemma and then see how it can be used to solve some regularity
problems.

Page 5

(a) [2] Suppose M is a DFA which decides L. Let p be the number of states of M . Consider an
input

s = s1s2 . . . sn with n ≥ p.
Let qk be the state the automata is in after reading the character sk. Show that there exist
integers 0 ≤ i < j ≤ p such that qi = qj .

(b) [6] Let i and j be as above. Define

x = s1s2 . . . si, y = si+1 . . . sj , and z = sj+1 . . . sn.

Show that these x, y, and z fit the description given in the Pumping Lemma, where P = p.

(c) [4] Using the Pumping Lemma, show that the language

L = {s | |s| is a prime number}

is not regular.

5. One natural question to ask is how regularity behaves under certain string and set operations.
These might include the union and intersection of two languages as well as their concatenation. It
turns out that regular languages are closed under many different kinds of operations. The following
problems will ask to prove closure of regularity under different types of operations.

(a) COMPLEMENT [2]: Let L be a regular language over the alphabet Σ, and set

Lc = {x ∈ Σ∗ |x 6∈ L}.

Prove that Lc is also regular.

(b) INTERSECTION [6]: Suppose A and B are two regular languages over a common alphabet
Σ. Prove that

A ∩B = {x ∈ Σ∗ |x ∈ A and x ∈ B}
is also regular.

(c) UNION [6]: Suppose A and B are two regular languages over a common alphabet Σ. Prove
that

A ∪B = {x ∈ Σ∗ |x ∈ A or x ∈ B}
is also regular.

(d) SET DIFFERENCE [2]: Suppose A and B are two regular languages over a common al-
phabet Σ. Prove that

A \B = {x ∈ Σ∗ |x ∈ A and x 6∈ B}
is also regular.

There are other set operations (e.g. concatenation) that can also be shown to be closed under
regularity, but doing so requires the notion of a non-deterministic finite automaton, which is beyond
the scope of this power round.

6. [8] For any language L ∈ {0, 1}∗, define a language L0 which consists of the set of words of the form

a1s1,2a2s2,3a3 . . . ak−1sk−1,kak

where a1a2a3 . . . ak is a word in L and si,j is 1 when ai 6= aj and zero otherwise. For example, the
word 1101 in L corresponds to the word 1011011 in L0.

Suppose L is regular. Must L0 also be regular?

Page 6

5 DFA Minimization

One of the biggest overall themes in the field of computer science is optimization. If wew have a program
that can solve a problem but does so in exponential time (e.g. the number of steps needed to solve the
problem on input of length n is roughly 2n), then the algorithm isn’t really that practical! Computer
scientists aim to design and implement processes which are efficient in some sense. As a result, it might
be beneficial to see how we can explore this type of minimization in DFAs. The most natural way to do
so involves looking at the number of states for a DFA which decides some language L.

7. [2] Below is a picture of a DFA which accepts some language L. Although this DFA is a decider for
L, it is somewhat inefficient. Propose two modifications to this DFA so that it still decides L but
requires fewer states to do so.

q0start q1 q2 q3

q4q5

0,1 0,1 0,1

0,1

0,1

0,1

8. [8] Consider the language
L = {0n1m |n−m ≡ 0 (mod 3)}.

Note that this language is a more general version of one that we’ve explored before. However, in
fact this language is regular! What is the smallest number of states needed in a DFA that decides
L? (Your answer must both establish a minimum number of states and show that this minimum is
achievable.)

9. (a) [4] Define
Ln = {x | x ∈ {0, 1}∗ and the nth-symbol from the left is a 1 }.

Show that there is some constant number c (independent of n) such that there is a DFA that
accepts Ln with at most n+ c states.

(b) [5] Define

Rn = {x | x ∈ {0, 1}∗ and the nth-symbol from the right is a 1 }.

Show that any DFA that accepts Rn has at least 2n states.

It turns out that DFAs are simple enough in nature that we can algorithmically construct a minimal
DFA for any given language L! (The only caveat is that we need to find some DFA which decides L first
before applying this algorithm, but that’s a worthy trade-off.) To explore this idea, we need to develop
the notion of equivalence classes.

Page 7

Definition 5.1. Let Σ be an alphabet, and let A be any language over Σ∗. For any word v ∈ Σ∗, let

Sv(A) = {w ∈ Σ∗ | vw ∈ L}.

We then say that two strings x, y ∈ Σ∗ are equivalent iff Sx(A) = Sy(A). We denote this mathematically
through the relation x ≡A y. Note that ≡A is an equivalence relation, and so we may refer to the
equivalence classes1 of A.

There exists a similar notion of equivalence with regards to DFAs.

Definition 5.2. Given a DFA M = (Q,Σ, δ, q0, F), we say that two strings x, y ∈ Σ∗ are indistinguishable
iff δ∗(q0, x) = δ∗(q0, y). In other words, the state reached by M on input x is the same as the state reached
by M on input y. We denote the notion of equivalence as x ≡M y. Just as above, note that ≡M is an
equivalence relation and so we may refer to the equivalence classes of M .

10. [2] Let L = {0n1n |n ∈ N}. What is S111100(L)?

11. [3] Suppose M is a DFA with N states. At most how many equivalence classes can M have? What
is an example of a DFA M for which equality does not hold?

12. [5] Show that the notions of equivalency and indistinguishability are identical. In other words, let
M be a DFA and let A = L(M). Then for any x, y ∈ Σ∗, if x ≡M y, then x ≡A y.

We now have enough background knowledge to state an important result.

Theorem 5.1 (Myhill-Nerode). A language A is regular iff the equivalence relation ≡A has a finite
number of equivalence classes. Furthermore, there exists some DFA M with L(M) = A such that every
state of M uniquely corresponds to an equivalence class of ≡A.

13. [8] Prove this theorem.

Using this theorem, we now can construct an algorithm for minimizing any DFA! The algorithm is as
follows. (Note: in this algorithm, we use the official definition of a DFA given in the previous section.)

• Draw a table for all pairs of states (Qi, Qj) (not just those which are connected directly). Initially,
these pairs will be unmarked.

• Mark all state pairs (Qi, Qj) with the property that Qi ∈ F and Qj 6∈ F and mark them.

• For some input A, if there exist states Qi and Qj with the property that (δ(Qi, A), δ(Qj , A)) is
marked, then mark the pair (Qi, Qj). Repeat this until there are no more states that can be
marked.

• Combine all the unmarked pairs of states in the reduced DFA. Return this new DFA. (For example,
if {a, b}, {b, c}, and {c, a} are all unmarked, combine the states a, b, c into one big state.)

1For any set X equipped with an equivalence relation ∼ and for any a in X, we say that the equivalence class of a is the
subset of all elements x ∈ X for which x ∼ a. It follows that these equivalence classes partition X into subsets; we then
define the number of equivalence classes of ∼ as the number of subsets in this partition.

Page 8

14. [4] Perform this algorithm on the following DFA. What is the result?

q0start

q1

q2

q3

q4

q5

0

1

0

1

0

1

0

1

0

1

0,1

15. [6] Show using the Myhill-Nerode Theorem that this procedure produces a DFA with the minimal
number of states.

Page 9

