
Number Theory Solutions
1. David, when submitting a problem for CMIMC, wrote his answer as 100xy , where x and y are two positive

integers with x < y. Andrew interpreted the expression as a product of two rational numbers, while Patrick
interpreted the answer as a mixed fraction. In this case, Patrick’s number was exactly double Andrew’s! What
is the smallest possible value of x+ y?

Proposed by David Altizio

Solution. According to the problem statement, Andrew interpreted David’s result as 100x
y , while Patrick

interpreted it as 100 + x
y . Since Patrick’s number was twice as large as Andrew’s we have

200x

y
= 100 +

x

y
=⇒ x

y
=

100

199
.

Therefore the smallest possible value of x+ y is 299 , achieved when x = 100 and y = 199.

2. Let a1, a2, . . . be an infinite sequence of integers such that k divides gcd(ak−1, ak) for all k ≥ 2. Compute
the smallest possible value of a1 + a2 + · · ·+ a10.

Proposed by David Altizio

Solution. Note that the condition implies that ak is divisible by both k, k + 1 for all k ≥ 1. In particular,
ak ≥ k(k+ 1). Also, the construction ak = k(k+ 1) will satisfy the conditions of the problem, so the smallest
possible value of the sum a1 + . . .+ a10 is

1 · 2 + 2 · 3 + . . .+ 10 · 11 = 440 .

3. How many pairs of integers (a, b) are there such that 0 ≤ a < b ≤ 100 and such that 2b−2a
2016 is an integer?

Proposed by Cody Johnson

Solution. Factoring 2016 as 25 · 32 · 7, it follows that 25|2b − 2a, whence a ≥ 5, and also 9|2b − 2a, whence
6|b − a. Consider b − a = 6n for some positive integer n. Then, 5 ≤ a ≤ 100 − 6n, and so there are 96 − 6n
possible values of a with precisely one corresponding value of b for a given n. Note that n > 0 because b > a.
Thus, the number of pairs can be counted by

16∑
n=1

96− 6n = 96 · 16− 16

(
16 · 17

2

)

which evaluates to 720 .

4. For some positive integer n, consider the usual prime factorization

n =

k∏
i=1

peii = pe11 p
e2
2 . . . pekk ,

where k is the number of primes factors of n and pi are the prime factors of n. Define Q(n), R(n) by

Q(n) =

k∏
i=1

ppii and R(n) =

k∏
i=1

eeii .

For how many 1 ≤ n ≤ 70 does R(n) divide Q(n)?



Proposed by Andrew Kwon

Solution. I claim that, by counting the complement, only the n with ei 6= 1, pi need be considered. Indeed,
if ei = 1, pi for all i then it is evident that R(n)|Q(n). Now, we consider the multiples of 8,9,25, or 49 less
than 70, since this is a superset of the possible n with some ei 6= 1, pi. Note that these are all disjoint.

• For multiples of 8, the multiples 8, 16, 32, 40, 48, 56, 64 fail, which contributes 7 failures.

• For multiples of 9, the multiples 9, 18, 36, 45, 54, 63 fail, which contributes 6 failures.

• For multiples of 25, the multiple 25, 50 fail, which contributes 2 failures.

• For multiples of 49, the multiple 49 fails, which contributes 1 failure.

These are the only integers which fail from 2 to 70, of which there are 16. The number 1 also works (an empty

product by default evaluates to 1.) Thus, there are 69-16+1 = 54 integers n such that R(n) divides Q(n).

5. Determine the sum of the positive integers n such that there exist primes p, q, r satisfying pn + q2 = r2.

Proposed by Andrew Kwon

Solution. By parity, one of the primes must be 2, while r 6= 2.

First consider the case when p = 2. Then, 2n = r2 − q2 = (r − q)(r + q), and so r − q, r + q are powers of 2,

say 2a, 2b, with 0 ≤ a < b. Then, r =
1

2
(2a + 2b). If a = 0, then r is not an integer; if a > 1, then b > a > 1,

and r is even. Neither of these are possible, and so a = 1. Thus we can write r = 2b−1 + 1, q = 2b−1−1. Since
2b−1 ≡ ±1 (mod 3), it follows that one of r, q must be divisible by 3; r = 3 =⇒ q = 1, is impossible, and so
we find that q = 3, r = 5 is a possible solution with b = 3. In this case we find that n = 4.

Otherwise, suppose q = 2. Then, pn = (r − 2)(r + 2), and as before we may write r − 2 = pa, r + 2 = pb.

Then, r =
1

2
(pa + pb) but p 6| r =⇒ a = 0. Now, 2 =

1

2
(pb − 1), and so p = 5, b = 1, r = 3, and n = 1.

These are the only solutions, and so the sum of the possible n is 5 .

6. Define a tasty residue of n to be an integer 1 ≤ a ≤ n such that there exists an integer m > 1 satisfying

am ≡ a (mod n).

Find the number of tasty residues of 2016.

Proposed by Andrew Kwon

Solution. The number of tasty residues of n = peii · · · p
ek
k is

k∏
i=1

(ϕ(peii ) + 1).

Indeed, we need peii |am − a for some m > 1. For each of these relatively prime moduli, this can occur only in
ϕ(peii ) + 1 ways; either a is relatively prime to pi, or peii |a. Thus, by the Chinese Remainder Theorem there
are

k∏
i=1

(ϕ(peii ) + 1)

total solutions modulo n. For n = 2016, this evaluates to 833 .



7. Determine the smallest positive prime p which satisfies the congruence

p+ p−1 ≡ 25 (mod 143).

Here, p−1 as usual denotes multiplicative inverse.

Proposed by David Altizio

Solution. Multiply both sides of the equivalence by p to obtain p2 + 1 ≡ 25p (mod 143). This means that

p2 − 25p+ 1 ≡ p2 − 25p+ 144 ≡ (p− 9)(p− 16) ≡ 0 (mod 143).

Note that p = 9, 16 are trivially solutions to this congruence, but there are other ones as well. In particular,
note that p − 9 ≡ 0 (mod 11) and p − 16 ≡ 0 (mod 13) gives p ≡ 42 (mod 143), while p − 9 ≡ 0 (mod 13)
and p− 16 ≡ 0 (mod 11) gives p ≡ 126 (mod 143).

Now the rest of the problem is straightforward. Remark that 9, 16, 42, 126 are all composite, so we add 143 to
each of these residues to get the next set of possible primes: 152, 159, 185, 269. The first three can be shown
to be composite, while 269 is prime, and the smallest possible prime satisfying these conditions.

8. Given that
70∑
x=1

70∑
y=1

xy

y
=

m

67!

for some positive integer m, find m (mod 71).

Proposed by Andrew Kwon

Solution. Consider

70∑
x=1

xy

y
for a fixed y, 1 ≤ y ≤ 69. Because 71 is prime, it has some primitive root, say

r, and {1, r, . . . , r69} is the set of all residues modulo 71. It follows that

70∑
x=1

xy ≡
70∑
n=0

rny (mod 71).

However, the right hand side is a geometric series in r, which we evaluate to be
r71y − 1

ry − 1
, where we formally

treat division as multiplication by multiplicative inverses modulo 71; note that y < 70 =⇒ ry − 1 6≡ 0
(mod 71), and so the above expression is well-defined modulo 71. Thus,

70∑
x=1

xy ≡ r71y − 1

ry − 1
(mod 71),

while r71y − 1 ≡ 0 (mod 71). Thus, for each 1 ≤ y ≤ 69, the numerator of

70∑
x=1

xy

y

is divisible by 71. On the other hand, the case where y = 70 yields

70∑
x=1

x70 ≡ 70 (mod 71).

Now, for each 1 ≤ y ≤ 69, we have

67!

70∑
x=1

xy

y



is an integer, and is divisible by 71. Thus, these terms do not contribute to m (mod 71). Finally, we consider

67!

70∑
x=1

x70

70
,

which is also an integer, and so

m ≡ 67! · 70−1
70∑
x=1

x70 (mod 71)

≡ 67! (mod 71).

Given Wilson’s Theorem, it’s evident that

m · 68 · 69 · 70 ≡ 70! (mod 71)

=⇒ 6m ≡ 1 (mod 71),

and so m ≡ 12 (mod 71).

9. Compute the number of positive integers n ≤ 50 such that there exist distinct positive integers a, b satisfying

a

b
+
b

a
= n

(
1

a
+

1

b

)
.

Proposed by David Altizio, solution by Andrew Kwon

Solution. Multiplying both sides of the equation by ab yields

a2 + b2 = n(a+ b).

Now, a2 + b2 ≡ 0 (mod a+ b), and so ab ≡ 0 (mod a+ b), and also a2 ≡ 0 (mod a+ b). Now, let d = gcd(a, b)
so that a = da′, b = db′, with a′, b′ relatively prime. Then, a + b|a2 is equivalent to a′ + b′|d(a′)2. However,
a′ + b′ cannot divide (a′)2, and thus a′ + b′|d. Finally,

n =
a2 + b2

a+ b
=

d

a′ + b′
((a′)2 + (b′)2).

In particular,
d

a′ + b′
must be an integer, and so it follows that n is any multiple of a sum of relatively prime

squares. It is well-known that any prime dividing a sum of squares must be 1 (mod 4), and so n need only
have a prime factor that is 1 (mod 4). The primes that satisfy this less than 50 are 5, 13, 17, 29, 37, 41, and

they contribute 10, 3, 2, 1, 1, 1 possible n respectively. Thus, the total possible number of n is 18 .

10. Let f : N 7→ R be the function

f(n) =

∞∑
k=1

1

lcm(k, n)2
.

It is well-known that f(1) = π2

6 . What is the smallest positive integer m such that m · f(10) is the square of
a rational multiple of π?

Proposed by Cody Johnson

Solution. For d ∈ {1, 2, 5, 10}, let Sd :=
∑

gcd(k,10)=d

1

k2
and Td :=

∑
d|k

1

k2
=

∞∑
k=1

1

(kd)2
=

π2

6d2
. Then we have

∞∑
k=1

1

lcm(k, 10)2
=

∞∑
k=1

gcd(k, 10)2

k2 · 102
=

1

102
[
12 · S1 + 22 · S2 + 52 · S5 + 102 · S10

]



Note that T10 = S10, T5 = S5 + S10 = S5 + T10, T2 = S2 + S10 = S2 + T10, and T1 = S1 + S2 + S5 + S10 =
S1 + T2 + T5 − T10. Therefore, the sum evaluates to

1

102
[
12 · (T1 − T2 − T5 + T10) + 22 · (T2 − T10) + 52 · (T5 − T10) + 102 · T10

]
=

343π2

60000
=

73π2

6 · 104

Thus, m = 6 · 7 = 42 .


