
Geometry Solutions Packet
1. Let 4ABC be an equilateral triangle and P a point on BC. If PB = 50 and PC = 30, compute PA.

Proposed by David Altizio

Solution. Let M be the midpoint of BC. The fact that PB = 50 and PC = 30 implies that the side
length of 4ABC is 80, so AM = 40

√
3. Furthermore, it is easy to deduce that BM = 10. Therefore by the

Pythagorean Theorem

AP 2 = AM2 +MB2 = (40
√

3)2 + 102 = 4900 =⇒ AP = 70 .

2. Let ABCD be an isosceles trapezoid with AD = BC = 15 such that the distance between its bases AB and
CD is 7. Suppose further that the circles with diameters AD and BC are tangent to each other. What is the
area of the trapezoid?

Proposed by David Altizio

Solution. Let T be the point of tangency of the two circles, and let M and N be the midpoints of AD and
BC respectively. Then M , N , and T all lie on the same line, so

MN = MT + TN =
1

2
AD +

1

2
BC =

1

2
· 15 +

1

2
· 15 = 15.

Now recall that the area of a trapezoid is 1
2h(b1 + b2), where h is the distance between the bases of the

trapezoid and b1 and b2 are said bases’ lengths. But recall that MN is a midline of ABCD, meaning that
its length is the average of the lengths of AB and CD. But this is precisely 1

2 (b1 + b2)! Therefore the desired

area is 7 · 15 = 105 .

3. Let ABC be a triangle. The angle bisector of ∠B intersects AC at point P , while the angle bisector of ∠C
intersects AB at a point Q. Suppose the area of 4ABP is 27, the area of 4ACQ is 32, and the area of
4ABC is 72. The length of BC can be written in the form m

√
n where m and n are positive integers with

n as small as possible. What is m+ n?

Proposed by David Altizio

Solution. For ease of typesetting let [X] denote the area of region X. Note that [ABP ] = 27 and [ABC] =
72 implies that [BCP ] = 72− 27 = 45, so by the Angle Bisector Theorem

AB

BC
=
AP

PC
=

[ABP ]

[BPC]
=

27

45
=

3

5
.

Through a similar process one may obtain AC
BC = 4

5 . Therefore 4ABC is a 3-4-5 right triangle with a right
angle at A.

Let AB = 3x, AC = 4x, and BC = 5x for some positive real x. Then by the formula for area

1

2
(3x)(4x) = 72 =⇒ x =

√
12 = 2

√
3.

Thus BC = 5x = 10
√

3 and the requested answer is 10 + 3 = 13 .

4. Andrew the Antelope canters along the surface of a regular icosahedron, which has twenty
equilateral triangle faces and edge length 4. (A three-dimensional image of an icosahedron
is shown to the right.) If he wants to move from one vertex to the opposite vertex, the
minimum distance he must travel can be expressed as

√
n for some integer n. Compute n.

Proposed by Patrick Lin

Solution. Looking at the icosahedral net, it is clear that the desired length is equal to the hypotenuse of
a right triangle with one leg equal to the height of a triangular face and the other leg equal to 5

2 of the side

length of a face. Hence Pythagorean theorem yields 102 + (2
√

3)2 = 112 .



5. Let P be a parallelepiped with side lengths x, y, and z. Suppose that the four space diagonals of P have
lengths 15, 17, 21, and 23. Compute x2 + y2 + z2.

Proposed by David Altizio and Joshua Siktar

Solution. Recall the Parallelogram Law in two dimensions, which states that if x and y are elements of
R2 then |x + y|2 + |x − y|2 = 2(|x|2 + |y|2). (This is true by the Law of Cosines.) I claim that this can be
extended further. Indeed, for any three dimensional vectors x, y, and z in R3, the identity

4(|x|2 + |y|2 + |z|2) = |x+ y + z|2 + |x+ y − z|2 + |x− y + z|2 + | − x+ y + z|2

is true. To prove this, we use the two-dimensional version repeatedly. Note that 0, x + y, z, and x + y + z
form a parallelogram, which means that

2(|x+ y|2 + |z|2) = |x+ y + z|2 + |x+ y − z|2.

Similarly, since 0, x− y, z, and x− y + z form a parallelogram, we have

2(|x− y|2 + |z|2) = |x− y + z|2 + | − x+ y + z|2.

Adding these together yields

2(|x+ y|2 + |x− y|2) + 4|z|2 = |x+ y + z|2 + |x+ y − z|2 + |x− y + z|2 + | − x+ y + z|2

and using the parallelogram law on the LHS one last time yields the desired equality.

Returning back to the original problem, we have

4(x2 + y2 + z2) = 152 + 172 + 212 + 232 = 2(162 + 1) + 2(222 + 1) = 2(162 + 222) + 4,

which means that x2 + y2 + z2 = 2(82 + 112) + 1 = 371 .

Remark. This version of the parallelogram law can be extended to hold true in all dimensions. Formally,

2n
n∑

i=1

|zi|2 =
∑

(e1,...,en)∈{+1,−1}n

∣∣∣∣∣
n∑

i=1

eizi

∣∣∣∣∣
2

for vectors z1, . . . , zn ∈ Rn.

6. In parallelogram ABCD, angles B and D are acute while angles A and C are obtuse. The perpendicular from
C to AB and the perpendicular from A to BC intersect at a point P inside the parallelogram. If PB = 700
while PD = 821, what is AC?

Proposed by David Altizio

Solution. First note that P is the orthocenter of4ABC. Furthermore, note that from the perpendicularity
DA ⊥ AP and DC ⊥ CP , so quadrilateral DAPC is cyclic. Furthermore, DP is a diameter of circle (DAPC).
This is the circumcircle of4DAC, which is congruent to BCA. As a result, if R is the circumradius of4ABC,
then PD = 2R.

Now I claim that PB = 2R cosB. To prove this, reflect P across AB to point P ′. It is well-known that P ′

lies on the circumcircle of 4ABC, so in particular the circumradii of 4APB and 4ACB are equal. But then
by Law of Sines

BP

sin∠BAP
=

BP

cosB
= 2R =⇒ BP = 2R cosB

as desired. (An alternate way to see this is through the diagram itself: from right triangle trigonometry on
triangles DAP and DCP it is not hard to see that PA = 2R cosA and PC = 2R cosC, which by symmetry
suggests PB = 2R cosB.)



A

B C

D

P

Finally, note that by Law of Sines again we have AC = 2R sinB, so

AC2 +BP 2 = (2R sinB)2 + (2R cosB)2 = (2R)2(sin2B + cos2B) = PD2.

Hence
AC2 = PD2 − PB2 = 8212 − 7002 = (821− 700)(821 + 700) = 112 · 392

and so AC = 11 · 39 = 429 .

7. Let ABC be a triangle with incenter I and incircle ω. It is given that there exist points X and Y on the
circumference of ω such that ∠BXC = ∠BY C = 90◦. Suppose further that X, I, and Y are collinear. If
AB = 80 and AC = 97, compute the length of BC.

Proposed by David Altizio

Solution. Let Ω be the circle with diameter AC. Then X and Y are the intersection points of ω and Ω,
so XY is the radical axis of ω and Ω. The condition that X, I, and Y are collinear implies that I lies on the
radical axis of these two circles.

Let M be the midpoint of BC and D the point of tangency of ω with BC. The power of I with respect to ω
is r2, while the power of I with respect to Ω is

MB2 −MI2 =
(a

2

)2
− (ID2 +DM2) =

a2

4
−
(
r2 +

(a
2
− (s− b)

)2)
= a(s− b)− r2 − (s− b)2.

Setting these equal to each other yields

2r2 = a(s− b)− (s− b)2 = (s− b)(a+ b− s) = (s− b)(s− c).

Now recall that Heron’s Formula states (rs)2 = K2 = s(s − a)(s − b)(s − c). Plugging in our equality from
above and cancelling like mad leads to

s = 2(s− a) =⇒ a+ b+ c = 2(b+ c− a) =⇒ b+ c = 3a.

Hence BC = AB+AC
3 = 80+97

3 = 59 .

8. Suppose ABCD is a convex quadrilateral satisfying AB = BC, AC = BD, ∠ABD = 80◦, and ∠CBD = 20◦.
What is ∠BCD in degrees?

Proposed by David Altizio



AB

C

D

X

Solution. Construct a point X outside 4ABC such that 4BCD ∼= 4AXC. (This can be done from the
fact that AC = BD.) Then from AB = BC we know ∠BAC = 40◦, so ∠BAX = 40◦+20◦ = 60◦. Combining
this with AX = BC = BA gives that 4ABX is equilateral.

From here, note that ∠CBX = ∠CBA− 60◦ = 40◦, and since 4CBX is isosceles ∠BXC = 70◦. Thus

∠BCD = ∠AXC = ∠BXC + ∠AXB = 70◦ + 60◦ = 130◦ .

9. Let 4ABC be a triangle with AB = 65, BC = 70, and CA = 75. A semicircle Γ with diameter BC is erected
outside the triangle. Suppose there exists a circle ω tangent to AB and AC and furthermore internally tangent
to Γ at a point X. The length AX can be written in the form m

√
n where m and n are positive integers with

n not divisible by the square of any prime. Find m+ n.

Proposed by David Altizio

Solution. Scale down by a factor of 5, so that AB = 13, BC = 14, and CA = 15. Let κ denote the incircle
of 4ABC. The key is to recognize that by Monge’s Theorem (or simply composite homotheties) AX passes
through the exsimilicenter P of κ and Γ. Since both of these circles are fixed, P is also fixed. Thus it suffices
to determine the location of P and use this to find the location of X.

A

B C

X

M

I

P

Denote by I the incenter of 4ABC and by M the midpoint of BC. Furthermore, let I0 and P0 be the feet of
the perpendiculars from I and P respectively to BC. We can easily compute that the radii of κ and Γ are 4
and 7 respectively, so by the definition of exsimilicenter, PI

PM = 4
7 . This in turn implies P0I0

P0M
= 4

7 . It is readily

seen that I0M = 1, so therefore P0M = 7
3 . Similar reasoning yields P0P = 28

3 .



Briefly turn to coordinates to make conceptualization easier. Set up a coordinate system where M is the
origin and BC is the x-axis. Then P has coordinates (− 7

3 ,
28
3 ) and A has coordinates (−2, 12), so the slope

of line AP is 8.

Revert back to the Euclidean Plane. Let D = AX ∩BC, and let X0 be the foot of the perpendicular from X
to BC. Set X0D to be t. Then XX0 = 8t. Furthermore, DM can be easily computed to be 3

2 + 2 = 7
2 by the

definition of slope. Thus by Pythagorean Theorem on 4MX0X,(
t+

7

2

)2

+ (8t)2 = 72 =⇒ t =
7

10
.

A few applications of the Pythagorean Theorem yield AX = 11
√
65

5 . Scaling back up by a factor of 5 yields

m = 11, n = 65, and m+ n = 076 .

10. Let 4ABC be a triangle with circumcircle Ω and let N be the midpoint of the major arc B̂C. The incircle ω
of 4ABC is tangent to AC and AB at points E and F respectively. Suppose point X is placed on the same
side of EF as A such that 4XEF ∼ 4ABC. Let NX intersect BC at a point P . If AB = 15, BC = 16,
and CA = 17, then compute PX

XN .

Proposed by David Altizio

Solution. We solve for general a, b, and c. We start off by proceeding through a series of lemmas.

A

B CD

E

F

X

I

Q

P

N

LEMMA 1: AX ‖ BC.

Proof. Let I be the incenter of 4ABC. Note that since ∠EXF = ∠EAF , X lies on the circumcircle of
4AEF . Now remark that since

∠FID + ∠FIX = 180◦ − ∠B + ∠XEF = 180◦ − ∠B + ∠B = 180◦,

we have D, I and X collinear, i.e. XI ⊥ BC. Furthermore, A and I are antipodal with respect to (AEF ), so
∠AXI = 90◦. Hence AX ‖ BC as desired.

LEMMA 2: Denote by Q the second intersection point of Ω with (AEF ). Then Q lies on PN .



Proof. Extend AX to hit Ω again at A′. Then AA′CB is an isosceles trapezoid. Furthermore, N is the
midpoint of ÂA′, so ∠AQN = ∠A′QN .

Now consider the spiral similarity sending 4XEF to 4A′BC. This spiral similarity is centered at Q (a
well-known fact - provable by angle chasing). Since this spiral similarity sends A to N (both are midpoints of
their respective arcs), we have 4QAX ∼ 4QNA′, i.e. ∠AQX = ∠NQA′. Hence N , X, and Q are collinear,
leading to the desired.

LEMMA 3: EF passes through P .

Proof. Note that by simple angle chasing

∠XQF = 180◦ − ∠XEF = 180◦ − ∠ABC = ∠PBF.

This implies that quadrilateral PQFB is cyclic, so ∠PBQ = ∠PFQ. But since Q is the center of spiral
similarity sending EF to BC, we also have ∠QFE = ∠QBC. Hence since P , B, and C are collinear we must
also have P , E, and F collinear.

Now we compute. Remark that by Power of a Point PQ · PX = PF · PE = PD2 and PQ · PN = PB · PC,
so

XN

PX
=
PN

PX
− 1 =

PN · PQ
PX · PQ

− 1 =
PB · PC
PD2

− 1.

To compute PB, remark that by either Menelaus or harmonic divisions we may obtain PB
PC = DB

DC . Since

BD = s− b and CD = s− c, it is easy to find that PB = a(s−b)
b−c . This means that PC = a(s−c)

b−c and

PD =
a(s− b)
b− c

+ (s− b) = (s− b)
(

a

b− c
+ 1

)
= (s− b)

(
a+ b− c
b− c

)
=

2(s− c)(s− b)
b− c

.

As a result,
PB · PC
PD2

=
a2(s− b)(s− c)/(b− c)2

(2(s− b)(s− c)/(b− c))2
=

a2

4(s− b)(s− c)
.

Hence
XN

PX
=

a2

4(s− b)(s− c)
− 1 =

162

4(24− 15)(24− 17)
− 1 =

82

9 · 7
− 1 =

1

63
,

so PX
XN = 63 .


