
Combinatorics Solutions
1. The phrase “COLORFUL TARTAN” is spelled out with wooden blocks, where blocks of the same letter are

indistinguishable. How many ways are there to distribute the blocks among two bags of different color such
that neither bag contains more than one of the same letter?

Proposed by Joshua Siktar

Solution. Observe that there are five pairs of letters and four singletons. It is not necessary to care about
the pairs, since each pair must have one letter in each bag. It then remains to distribute four distinct letters
among two distinguishable bags; this can be done in 24 = 16 ways.

2. Six people each flip a fair coin. Everyone who flipped tails then flips their coin again. Given that the
probability that all the coins are now heads can be expressed as simplified fraction m

n , compute m + n.

Proposed by Patrick Lin

Solution. Observe that each person has a 1− ( 1
2 )( 1

2 ) = 3
4 chance of ending up with a head; the only way

they do not end heads is if they flip tails twice in a row. Hence with 6 people the probability is ( 3
4 )6 = 729

4096 ,

and so the answer is 4825 .

3. At CMU, markers come in two colors: blue and orange. Zachary fills a hat randomly with three markers such
that each color is chosen with equal probability, then Chase shuffles an additional orange marker into the hat.
If Zachary chooses one of the markers in the hat at random and it turns out to be orange, the probability
that there is a second orange marker in the hat can be expressed as simplified fraction m

n . Compute m + n.

Proposed by Patrick Lin

Solution. Notice that there is a 1
8 , 3

8 , 3
8 , and 1

8 chance for the hat to contain 1, 2, 3, and 4 orange markers,
respectively, since the original three markers are random and we add one extra orange marker in. Then the
probability that we choose an orange marker first is 1

8 ·
1
4 + 3

8 ·
2
4 + 3

8 ·
3
4 + 1

8 ·
4
4 = 20

32 , and the probability that
there is no orange marker left given this is equal to the chance there was only one orange marker given this,

which is 1
8 ·

1
4 = 1

32 . Hence the chance there is another orange marker is given by 1 − 1/32
20/32 = 19

20 , and the

answer is thus 39 .

4. Kevin colors three distinct squares in a 3x3 grid. Given that there exist two uncolored squares such that
coloring either one of them would create a horizontal or vertical red line, find the number of ways he could
have colored the original three squares.

Proposed by Patrick Lin

Solution. Observe that, in the original three colored squares, one pair must share the same row and another
pair must share the same column in order to guarantee being able to create two different lines. Assume we
pick the first square arbitrarily from 9 choices. If we pick the second square sharing the same row or column
as the first, we have 4 options, and then we have 4 options for the third. If we pick the second square not
sharing either the same row or the same column as the first, we still have 4 options, but then we have only 2
options for the third. This overcounts by a factor of 3! = 6, and so in total there are 1

6 (9 · 4 · 4 + 9 · 4 · 2) = 36
ways.

5. Let S be a regular 18-gon, and for two vertices in S define the distance between them to be the length of the
shortest path along the edges of mathcalS between them (e.g. adjacent vertices have distance 1). Find the
number of ways to choose three distinct vertices from S such that no two of them have distance 1, 8, or 9.

Proposed by Patrick Lin

Solution. Consider the nine pairs of vertices formed by pairing a vertex with its diametrically opposite
vertex. Clearly, no pair can have both its vertices chosen, since they have distance 9. Further, choosing one



from the pair is equivalent to choosing the other - a vertex with distance 1 from one will have distance 8 from
the other, and vice versa - and hence we can consider the two vertices identical. The problem then reduces to
finding the number of ways to choose three distinct vertices in a nonagon, where each vertex represents one
such pair in S, such that no two are pairwise adjacent. Choosing the first from 9 vertices, we find there are(
6
2

)
− 5 = 10 ways to choose the remaining two. But we have overcounted by distinguishing the first vertex,

and hence there are actually 9 · 10 · 13 = 30 ways. Now for each choice of three pairs there are 23 = 8 ways to

choose the individual vertices, and thus the answer is 8 · 30 = 240 .

Thanks to Brice Huang for suggesting an alteration to this problem.

6. Shen, Ling, and Ru each place four slips of paper with their name on it into a bucket. They then play the
following game: slips are removed one at a time, and whoever has all of their slips removed first wins. Shen
cheats, however, and adds an extra slip of paper into the bucket, and will win when four of his are drawn.
Given that the probability that Shen wins can be expressed as simplified fraction m

n , compute m + n.

Proposed by Victor Xu, solution by Patrick Lin

Solution. First, observe that the probability that Ling and Ru win (or lose) are equal. Then

2P (L loses) = P (L loses) + P (R loses) = 2P (S wins) + P (L wins) + P (R wins) = 1 + P (S wins).

It then suffices to compute the probability that Ling loses. Consider continuing to draw slips until all the
slips have been drawn. Then if Lings slip is the last one, clearly she loses. If Rus slip is the last one, then
Ling loses if the sequence with all instances of R removed ends either with L or with LS. If Shens slip is the
last one removed, then the game is entirely symmetric and so everyone has an equal chance to lose. We count
probability in each case.

• Case 1: L last. Given this, she loses with probability 1.

• Case 2: R last. Given this, the probability she loses is given by 4
9 + 5

9
4
8 .

• Case 3: S last. Given this, everyone has an equal chance to lose and so her probability of losing is 2
3 .

Thus the overall probability she loses is

4

13
+

4

13

(
4

9
+

5

9
· 4

8

)
+

5

13
· 2

3
=

92

117
.

Hence the desired probability is equal to 2 · 92
117 − 1 = 67

117 , and the answer is 184 .

7. There are eight people, each with their own horse. The horses are arbitrarily arranged in a line from left to
right, while the people are lined up in random order to the left of all the horses. One at a time, each person
moves rightwards in an attempt to reach their horse. If they encounter a mounted horse on their way to their
horse, the mounted horse shouts angrily at the person, who then scurries home immediately. Otherwise, they
get to their horse safely and mount it. The expected number of people who have scurried home after all eight
people have attempted to reach their horse can be expressed as simplified fraction m

n . Find m + n.

Proposed by Patrick Lin

Solution. We find the expected number of people who mount their horse successfully. Number the horses
from left to right 1, 2, . . . , 8 and label their owners with the same number. Note that when person i moves,
the only way for him to mount his horse is if he is the first of i people (namely, those with labels 1, 2, . . . , i) to
move. Hence person i mounts his horse with 1

i probability. Since we have eight people, the expected number

of people who mount their horse is thus
∑8

i=1
1
i = H8 = 761

280 . The expected number of people who scurry
home is hence

8− 761

280
=

1479

280
,

and so the answer is 1759 .



8. Brice is eating bowls of rice. He takes a random amount of time t1 ∈ (0, 1) minutes to consume his first bowl,
and every bowl thereafter takes tn = tn−1 + rn minutes, where tn−1 is the time it took him to eat his previous
bowl and rn ∈ (0, 1) is chosen uniformly and randomly. The probability that it takes Brice at least 12 minutes
to eat 5 bowls of rice can be expressed as simplified fraction m

n . Compute m + n.

Proposed by Patrick Lin

Solution. We consider geometric probability in five dimensions. Note that the probability that it takes
Brice at least 12 minutes is equal to the probability that he takes at most 3 minutes. Observe that the volume
for the figure bounded by x1 +x2 +x3 +x4 +x5 ≤ 3 and xi > 0 is a triangular hyperpyramid with side length

3 whose volume is given by 35

5! . But for each i, we have the bound xi ≤ i, which forms a box with volume 5!.
Now observe that since 3 = 1 + 2, the volume of the figure outside the box is equal to a similar hyperpyramid
with side length 2 (this comes when x1 > 1) and another one with side length 1 (this comes when x2 > 2).
There is no other overlap, since it is impossible for both x1 and x2 to exceed their respective bounds, and
it is impossible for each of the other xis to exceed their bounds as well. Hence the total volume is given by
35−25−15

5! . The probability is thus 35−25−15
(5!)2 = 7

480 , and so the answer is 487 .

9. 1007 distinct potatoes are chosen independently and randomly from a box of 2016 potatoes numbered
1, 2, . . . , 2016, with p being the smallest chosen potato. Then, potatoes are drawn one at a time from the
remaining 1009 until the first one with value q < p is drawn. If no such q exists, let S = 1. Otherwise, let
S = pq. Then given that the expected value of S can be expressed as simplified fraction m

n , compute m + n.

Proposed by Patrick Lin

Solution. Note that the largest possible value for p is equal to (2016 − 1007) + 1 = 1010. Then for any
1 ≤ i ≤ 1010, the probability that p = i is given by

P (p = i) =

(
2016−i
1006

)(
2016
1007

) .

Hence for i > 1, q is chosen randomly between 1 and i − 1, inclusive, and so E[q | p = i] = p
2 . This means

E[S | p = i] = p2

2 . Note that for i = 1, we have E[S | p = 1] = 1
2 , which abides by the observation for i > 1,

and so we can just lump everything together. The total expected value is hence

E[S] =

1010∑
i=1

(
2016−i
1006

)(
2016
1007

) · i2
2

=
1

2
(
2016
1007

) 1010∑
i=1

i2
(

2016− i

1006

)
.

With some application of Hockey Stick, we find that

2

(
2016

1007

)
E[S] = 12

(
2015

1006

)
+ 22

(
2014

1006

)
+ · · ·+ 10102

(
1006

1006

)
= 1

(
2016

1007

)
+ 3

(
2015

1007

)
+ · · ·+ 2019

(
1007

1007

)
= 2

(
1

(
2016

1007

)
+ 2

(
2015

1007

)
+ · · ·+ 1010

(
1007

1007

))
−
(

2017

1008

)
= 2

((
2017

1008

)
+

(
2016

1008

)
+ · · ·+

(
1008

1008

))
−
(

2017

1008

)
= 2

(
2018

1009

)
−
(

2017

1008

)
=

(
2018

1009

)
+

(
2017

1009

)
.



Hence we have

E[S] =

(
2018
1009

)
+
(
2017
1009

)
2
(
2016
1007

) =
2018!

1009!1009! + 2017!
1009!1008!

2 2016!
1009!1007!

=
3 · 1009 · 2017!

2 · 1008 · 1009 · 2016!
=

2017

672
,

and so the answer is 2689 .

10. For all positive integers m ≥ 1, denote by Gm the set of simple graphs with exactly m edges. Find the number
of pairs of integers (m,n) with 1 < 2n ≤ m ≤ 100 such that there exists a simple graph G ∈ Gm satisfying the
following property: it is possible to label the edges of G with labels E1, E2, . . ., Em such that for all i 6= j,
edges Ei and Ej are adjacent if and only if either |i− j| ≤ n or |i− j| ≥ m− n.

Note: A graph is said to be simple if it has no self-loops or multiple edges. In other words, no edge connects
a vertex to itself, and the number of edges connecting two distinct vertices is either 0 or 1.

Proposed by David Altizio

Solution. For convenience, we make a few definitions:

• Let f be a function which takes in a graph G = (V,E) and returns another graph G′ = (V ′, E′) such
that there exists a bijection g : V ′ 7→ E with the property that the edge {v1, v2} is in E′ if and only if
g(v1) and g(v2) are both incident to some common vertex v ∈ V .

• For positive integers m and n with m ≥ 2n, let Cm,n denote the graph with vertex sequence {vi}mi=1 such
that vertices vi and vj are adjacent iff |i− j| ≤ n or |i− j| ≥ m− n.

Note that the problem statement is equivalent to finding the number of pairs of integers (m,n) such that
there exists a graph H with f(H) = Cm,n.1 With that in mind, we claim that there are only three possible
classes of pairs (m,n) for which an H exists:

• (m,n) = (i, 1) for 2 ≤ i ≤ 100;

• (m,n) = (j, b j2c) for 4 ≤ j ≤ 100 (note that j = 2 and j = 3 are already accounted for);

• (m,n) = (6, 2).

This yields 99 + 97 + 1 = 197 possible pairs.

To prove this, we case on the value of n. The cases are ordered by difficulty.

• CASE 1: n = 1. First consider the case (m,n) = (2, 1). Let G be a path of length 2. It is not hard to
show that f(G) = C2,1. Hence m = 2 works. Otherwise, note that if G is a cycle of length k, then f(G)
is also a cycle of length k. (Why?) Hence all cycles of length k ≥ 3 work, and these are only achieved
by n = 1. (Note that C3,2 is also a cycle of length 3, but this is disallowed by the condition 2n ≤ m.)

• CASE 2: n ≥ 3. I claim that the only conditions that work in this case are cliques. To prove this, we
first make an important observation. Assume that Cm,n has a clique of size k > 3. Then note that all
vertices in this clique are connected to each other, meaning that the edges in H associated with these
vertices must all touch each other. The only way this can happen is when all these edges are incident to
some common vertex. (The case k = 3 is special, as we will discuss later; this is the reason why n = 2 is
a separate case.) Running the reverse logic, it is not hard to show that f(G) has a clique of size at least
k iff G has a vertex of degree at least k.

Suppose that m > 2n, i.e. Cm,n is not an m-clique. Consider the vertex v1. Remark that vn+2 and v1
are not connected, and furthermore note that v2, v3, . . ., vn+1 are all connected to both of these vertices
and to each other. In other words, v1 through vn+1 form a clique, as do v2 through vn+2. Thus, all edges
associated with v1 through vn+2 must be incident to a common vertex, but this is a contradiction since
v1 and vn+2 are not adjacent! Hence Cm,n must be an m-clique, which forces (m,n) = (k, bk2 c). Note
that this is constructable for all k by considering a graph G with k edges all incident at a single vertex.

1This was the original formulation of the problem; as such, the problem author has decided to re-introduce this notation into the
solution in order to minimize as much re-typing as possible.



• CASE 3: n = 2. In order to tackle this case, we need to explicitly construct a connected subgraph of
H in order to derive the contradictions and examples we need.

Assume m ≥ 7. Consider vertex v1, and for convenience let ei ≡ g(vi) for all 1 ≤ i ≤ m. Note that the
edge e1 is incident to exactly four other edges: e2, e3, em, and em−1. I now claim that although e2 and
em are connected, they cannot be incident to the same vertex of e1. To prove this, write e1 = {A,B},
and assume WLOG that e2 and em are incident to A. Note that e3 and em−1 are not connected by the
definition of Cm,2. Thus, these two edges must not both be adjacent to B, meaning that A has degree
at least 4. But this is a contradiction, since by the logic in Case 2 Cm,2 must have a clique of size ≥ 4,
which is false. Hence e2 and em are incident to opposite endpoints of e1. Combined with the fact that
e3 and em−1 are not adjacent, we can conclude that the graph must be of the following form:

Now it is not hard to derive a contradiction. Consider the edge g4. Remark that g4 must be connected
to both g3 and g2. However, if these three edges were to all share a common vertex, then g4 would be
connected to g1, which is impossible. Thus, the only placement for g4 occurs when g2, g3, and g4 form a
triangle. But this means that g4 is connected to gm, contradiction! Hence m ≥ 7 is impossible.

For m = 4 and m = 5, the construction from Case 2 works, while m = 6 works by noting that
f(K4) = C6,2. Hence (4, 2), (5, 2), and (6, 2) work as well.

Combining all these cases, we get the three families of solutions listed at the beginning of this solution, and
so we are done.


