
Algebra Solutions Packet
1. In a race, people rode either bicycles with blue wheels or tricycles with tan wheels. Given that 15 more people

rode bicycles than tricycles and there were 15 more tan wheels than blue wheels. What is the total number
of people who rode in the race?

Proposed by Patrick Lin

Solution. Let b be the number of bicycles ridden and t be the number of tricycles ridden. Then we have

b− t = 15

3t− 2b = 15.

Solving yields b = 60 and t = 45, and thus the answer is 105 .

2. Suppose that some real number x satisfies

log2 x+ log8 x+ log64 x = logx 2 + logx 16 + logx 128.

Given that the value of log2 x+ logx 2 can be expressed as a
√
b

c , where a and c are coprime and b is squarefree,
compute abc.

Proposed by Patrick Lin

Solution. Let log2 x = k. Then simplification yields log2 x + log8 x + log64 x = 3
2k. Similarly, we have

logx 2 + logx 16 + logx 128 = 12
k . Setting them equal, we have k = 2

√
2. Then we have k + 1

k = 9
√
2

4 , and so

the answer is 72 .

3. Let ` be a real number satisfying the equation (1+`)2

1+`2 = 13
37 . Then

(1 + `)3

1 + `3
=
m

n
,

where m and n are positive coprime integers. Find m+ n.

Proposed by David Altizio

Solution. Replace 13
37 with a general N . Note that the given rearranges to

N =
(1 + `)2

1 + `2
= 1 +

2`

1 + `2
= 1 +

2

`+ 1
`

=⇒ `+
1

`
=

2

N − 1
.

Now remark that

(1 + `)3

1 + `3
=

(1 + `)3

(1 + `)(`2 − `+ 1)
=

(`+ 1)2

`2 − `+ 1

= 1 +
3`

`2 − `+ 1
= 1 +

3

`+ 1
` − 1

.

Hence substituting our expression for `+ 1
` yields

1 +
3

`+ 1
` − 1

= 1 +
3

2
N−1 − 1

= 1 +
3(N − 1)

3−N
=

2N

3−N
.

Plugging in N = 13
37 and simplifying gives a result of 13

49 , so the requested answer is 13 + 49 = 62 .



4. A line with negative slope passing through the point (18, 8) intersects the x and y axes at (a, 0) and (0, b)
respectively. What is the smallest possible value of a+ b?

Proposed by David Altizio

Solution. Note that the equation of the line can be written as y − 8 = m(x − 18) for some m < 0; this
is just point-slope form. For simplicity, let m0 = −m, so that m0 is positive; then the equation rewrites to
y − 8 = m0(18 − x). Substituting y = 0 yields a = 18 + 8

m0
, and substituting x = 0 yields b = 8 + 18m0.

Therefore

a+ b = 18 + 8 +

(
8

m0
+ 18m0

)
= 26 +

8

m0
+ 18m0.

This can be easily maximized by AM-GM or calculus, but instead we propose an alternate approach. Let
8
m0

+ 18m0 = K for some K ≥ 0. Then 18m2
0 −Km0 + 8 = 0. We thus seek to find the maximum possible

K such that the quadratic 18t2 −Kt + 8 has at least one real solution. This condition is equivalent to the
discriminant being nonnegative, so we must have

K2 − 4 · 18 · 8 ≥ 0 =⇒ K ≥ 24.

Therefore a+ b ≥ 26 + 24 = 50 .

5. The parabolas y = x2 + 15x + 32 and x = y2 + 49y + 593 are tangent to each other at some point (x0, y0).
Find x0 + y0.

Proposed by Andrew Kwon

Solution. Adding the two equations yields x + y = x2 + 15x + y2 + 49y + 625, which is equivalent to
x2 + 14x + 49 + y2 + 48y + 576 = 0. This factors as a sum of squares (x + 7)2 + (y + 24)2 = 0, and so

x = −7, y = −24. Then, (x0, y0) = (−7,−24) and x0 + y0 = −31 .

6. For some complex number ω with |ω| = 2016, there is some λ > 1 such that ω, ω2, λω form an equilateral

triangle in the complex plane. Then, λ can be written in the form a+
√
b

c , with a, b, c positive integers. Compute√
a+ b+ c.

Proposed by Andrew Kwon

Solution. In general, let |ω| = n. Note that ω, ω2, λω form an equilateral triangle if and only if 1, λ, ω for
an equilateral triangle in the complex plane. This is because multiplying each number by ω scales and rotates
every point in the plane by the same amount. Interpreting the complex numbers 1, ω as vectors, it follows
that λ exists only if the angle between 1, ω is π

3 . Also note that |ω − 1| = |λ− 1| = λ− 1 since λ, 1 are other
vertices of the same equilateral triangle. By the Law of Cosines, we have

|w|2 = 1 + |ω − 1|2 + |ω − 1|
= 1 + (λ− 1)2 + (λ− 1),

and so λ = 1+
√
4n2−3
2 . It follows that a+ b+ c = 4n2, and so the desired answer is simply

√
40322 = 4032 .

7. Let a, b, c, and d be positive real numbers which satisfy the system of equations

(a+ b)(c+ d) = 143,

(a+ c)(b+ d) = 150,

(a+ d)(b+ c) = 169.

Find the smallest possible value of a2 + b2 + c2 + d2.

Proposed by David Altizio



Solution. Note that the equations expand to

ac+ ad+ bc+ bd = 143,

ab+ ad+ bc+ cd = 150,

ab+ ac+ bd+ cd = 169.

Adding all these equalities together yields

2(ab+ ac+ ad+ bc+ bd+ cd) = 143 + 150 + 169 = 462.

As a result, we have

(a+ b+ c+ d)2 = a2 + b2 + c2 + d2 + 2(ab+ ac+ ad+ bc+ bd+ cd) = a2 + b2 + c2 + d2 + 462.

Hence in order to minimize a2 + b2 + c2 + d2 it suffices to minimize a+ b+ c+ d.

To do this, note that by AM-GM on the last equation we have

(a+ d)(b+ c) ≤
(
a+ b+ c+ d

2

)2

=⇒ (a+ b+ c+ d)2 ≥ 4 · 169 = 676.

This is in fact sufficient to guarantee the existence of a, b, c, d which satisfy all three equations. To see this,
let s = a+ b+ c+ d, and note that the original system can be written as

(a+ b)(s− (a+ b)) = 143,

(a+ c)(s− (a+ c)) = 150,

(a+ d)(s− (a+ d)) = 169.

These are quadratics in a+ b, a+ c, and a+ d respectively; as a result, whenever s ≥ 26 the values of a+ b,
a + c, and a + d are all real. Adding these together allows one to solve for a, from which the values of the
other three variables follow. (A computer simulation ensures that a, b, c, and d are all positive.)

Hence, we have
a2 + b2 + c2 + d2 = (a+ b+ c+ d)2 − 462 ≥ 676− 462 = 214 .

8. Let r1, r2, . . ., r20 be the roots of the polynomial x20 − 7x3 + 1. If

1

r21 + 1
+

1

r22 + 1
+ · · ·+ 1

r220 + 1

can be written in the form m
n where m and n are positive coprime integers, find m+ n.

Proposed by David Altizio

Solution. Note that by partial fraction decomposition

1

r2k + 1
=

1

(rk − i)(rk + i)
=

1

2i

(
1

rk − i
− 1

rk + i

)
for all positive integers 1 ≤ k ≤ 20. This in turn means that the expression we wish to evaluate can be
rewritten as

1

2i

20∑
k=1

1

rk − i
− 1

2i

20∑
k=1

1

rk + i
.

We now present two ways to compute this sum: the first one uses standard algebraic techniques, while the
second employs a bit of calculus.



• METHOD 1: Let Q(x) be the polynomial whose roots are r1 + i, r2 + i, . . ., r20 + i. Then by standard
methods

Q(x) = P (x− i) = (x− i)20 − 7(x− i)3 + 1.

We seek to compute the sum of the reciprocals of the roots of Q. Note that the constant term of Q is
Q(0) = (−i)20 − 7(−i)3 + 1 = 2− 7i, while by the Binomial Theorem

[x]Q(x) =

(
20

1

)
(−i)19 − 7

(
3

1

)
(−i)2 = 20i+ 21.

Thus by Vieta’s the sum of the reciprocals of the roots of Q is simply

−(20i+ 21)

2− 7i
=

98

53
− 182

53
i.

To compute the second summation, let R be the polynomial whose roots are r1 − i through r20 − i. A
similar argument works here as well, but in fact we can save time by noting that for all real x we have

R(x) = P (x+ i) = P (x− i) = P (x− i) = Q(x),

and so R(x) ≡ Q(x) identically. As a result, all the coefficients of R are conjugates of the coefficients of
Q, and so the sum of the reciprocals of the roots of R is 98

53 + 182
53 i. Hence the desired sum is

1

2i

[(
98

53
+

182

53
i

)
−
(

98

53
− 182

53
i

)]
=

182

53

and the requested answer is 182 + 53 = 235 .

• METHOD 2: Rewrite the sum as

1

2i

20∑
k=1

1

(−i)− rk
− 1

2i

20∑
k=1

1

i− rk
.

We now make use of the following lemma.

LEMMA: Let P be a polynomial of degree n and r1, . . . , rn its roots. Then for any x,

n∑
k=1

1

x− rk
=
P ′(x)

P (x)
.

Proof. Assume WLOG that P is monic; we can do this since scaling P by a constant changes neither
the roots of P nor the ratio P ′(x)/P (x) for any x. Rewrite P (x) as

∏n
i=1(x− ri). Then remark

P ′(x) =
d

dx

[
n∏
i=1

(x− ri)

]
=

n∑
i=1

∏
1≤j 6=i≤n

(x− rj).

This is basically a generalization of the Product Rule for derivatives. Finally, we can connect this to the
sum in question by noting that

n∑
i=1

1

x− ri
=

1∏n
i=1(x− ri)

n∑
i=1

∏
1≤j 6=i≤n

(x− xj) =
P ′(x)

P (x)

as desired.

With this, our summation becomes

1

2i

20∑
k=1

1

(−i)− rk
− 1

2i

20∑
k=1

1

i− rk
=

1

2i

(
P ′(−i)
P (−i)

− P ′(i)

P (i)

)
,

which from our remark in Method 1 is just the imaginary part of P
′(−i)
P (−i) . Computation yields 182

53 , giving

the same answer as before.



9. Let bxc denote the greatest integer function and {x} = x− bxc denote the fractional part of x. Let 1 ≤ x1 <
. . . < x100 be the 100 smallest values of x ≥ 1 such that

√
bxcbx3c+

√
{x}{x3} = x2. Compute

50∑
k=1

1

x22k − x22k−1
.

Proposed by Cody Johnson

Solution. By Cauchy-Schwarz,√
bxcbx3c+

√
{x}{x3} ≤

√
(bxc+ {x})(bx3c+ {x3}) = x2.

This in turn means that we actually have equality. Recall that in the two variable case of Cauchy-Schwarz,

(a2 + b2)(c2 + d2) ≥ (ac+ bd)2,

the equality case holds when a
c = b

d , or ad = bc. Applying this here yields

bxc{x3} = bx3c{x}
⇐⇒ bxcx2 = bx3c
⇐⇒ 2bxc2{x}+ bxc{x}2 =

⌊
3bxc2{x}+ 3bxc{x}2 + {x}3

⌋
.

We also have bxcx2 = bx3c > x3 − 1, so bxc > x− 1
x2 , i.e. {x} < 1

x2 . This allows us to easily bound

b3bxc2{x}+ 3bxc{x}2 + {x}3c ∈ {0, 1, 2, 3},

which means bxc{x}(2bxc+ {x}) ∈ {0, 1, 2, 3}. Let this expression equal r. Writing this as a quadratic in {x}
and using the Quadratic Formula yields

{x} = −bxc+

√
bxc4 + rbxc
bxc

,

where r ∈ {0, 1, 2, 3}. Since we need this to be in the interval [0, 1
x2 ), we can further bound to get that these

values work precisely when r ∈ {0, 1}. Thus, the solution set is x2n−1 = n, x2n =
√
n2 + 1

n for n = 1, 2, . . . , 50.

Finally, we compute
50∑
n=1

1

(
√
n2 + 1/n)2 − n2

=

50∑
n=1

n =
50(51)

2
= 1275 .

10. Denote by F0(x), F1(x), . . . the sequence of Fibonacci polynomials, which satisfy the recurrence F0(x) = 1,
F1(x) = x, and Fn(x) = xFn−1(x) + Fn−2(x) for all n ≥ 2.1 It is given that there exist integers λ0, λ1, . . .,
λ1000 such that

x1000 =

1000∑
i=0

λiFi(x)

for all real x. For which integer k is |λk| maximized?

Proposed by David Altizio

Solution. Replace 1000 with a general n. I claim that for all n ≥ 0 we have

xn = Fn(x) +

bn/2c∑
k=1

(−1)k
[(
n

k

)
−
(

n

k − 1

)]
Fn−2k(x).

To prove this, we use mathematical induction. The base case, n = 0, is easy. For the inductive step, assume
that the identity holds true for some value of n. We now split into cases.

1In reality, the indexes are shifted up by one (so e.g. F1(x) = 1), but this interpretation makes the problem statement easier to write
since degFi(x) = i for all i ≥ 0



• CASE 1: n is odd. Note that multiplying both sides of the equality by x and using the definition of
the Fibonacci polynomials yields

xn+1 = xFn(x) +

bn/2c∑
k=1

(−1)k
[(
n

k

)
−
(

n

k − 1

)]
xFn−2k(x)

= Fn+1(x)− Fn−1(x) +

bn/2c∑
k=1

(−1)k
[(
n

k

)
−
(

n

k − 1

)]
[Fn+1−2k(x)− Fn−1−2k(x)]

= Fn+1(x)− Fn−1(x) +

bn/2c∑
k=1

(−1)k
[(
n

k

)
−
(

n

k − 1

)]
Fn+1−2k(x)

−
bn/2c∑
k=1

(−1)k
[(
n

k

)
−
(

n

k − 1

)]
Fn−1−2k(x).

Our end goal is to combine these two summations into one. To accomplish this, note that shifting the
indeces of the second summation up by 1 and moving the Fn−1(x) gives

xn+1 = Fn+1(x) +

bn/2c∑
k=1

(−1)k
[(
n

k

)
−
(

n

k − 1

)]
Fn+1−2k(x)

−

Fn−1(x) +

bn/2c+1∑
k=2

(−1)k−1
[(

n

k − 1

)
−
(

n

k − 2

)]
Fn+1−2k(x)


= Fn+1(x) +

bn/2c∑
k=1

(−1)k
[(
n

k

)
−
(

n

k − 1

)]
Fn+1−2k(x)

−
bn/2c+1∑
k=1

(−1)k−1
[(

n

k − 1

)
−
(

n

k − 2

)]
Fn+1−2k(x).

Now we are able to combine the summations together. First, we deal with the case where n+ 1−2k 6= 0.
Note that in this case, it is not hard to see that the coefficient of Fn+1−2k(x) is

(−1)k
[(
n

k

)
−
(

n

k − 1

)]
− (−1)k−1

[(
n

k − 1

)
−
(

n

k − 2

)]
= (−1)k

[((
n

k

)
−
(

n

k − 1

))
+

((
n

k − 1

)
−
(

n

k − 2

))]
= (−1)k

[((
n

k

)
+

(
n

k − 1

))
−
((

n

k − 1

)
+

(
n

k − 2

))]
= (−1)k

[(
n+ 1

k

)
−
(
n+ 1

k − 1

)]
.

The case where n + 1 − 2k = 0 (i.e. k = n+1
2 ) is a bit trickier. Note that the only summation that

contains an F0(x) term is the second one. Thus, we may conclude that the coefficient of F0(x) in the
final expansion is

(−1)(n+1)/2

[(
n

(n− 1)/2

)
−
(

n

(n− 3)/2

)]
.

In order for our hypothesis to be correct, it suffices to show that this equals

(−1)(n+1)/2

[(
n+ 1

(n+ 1)/2

)
−
(

n+ 1

(n− 1)/2

)]
.

To prove this, we need to be slightly clever: since n+1
2 + n−1

2 = n, we have
(

n
(n−1)/2

)
=
(

n
(n+1)/2

)
. After

this point, we can apply the same logic as we did above to reach the desired conclusion.



We have thus shown in this case that

xn+1 = Fn+1(x) +

b(n+1)/2c∑
k=1

(−1)k
[(
n+ 1

k

)
−
(
n+ 1

k − 1

)]
Fn+1−2k(x),

which is what we wanted.

CASE 2: n is even. This case is actually very similar to the previous case, so we won’t show work
here; the only difference relates to that edge case we described above. More specifically, note that we
can’t say xFn−2k(x) = Fn+1−2k(x) − Fn−1−2k(x) for k = n/2, since then the second term is F−1(x),
which is bad. Instead, we write xF0(x) = F1(x). Details are left to the reader.

We have thus proven the hypothesis true for n+ 1, and so by the Principle of Mathematical Induction we are
done.

Now we work on maximizing the λk. Note that from the above work we may extract the λk terms to get

|λn−2k| =
(
n

k

)
−
(

n

k − 1

)
for all 0 ≤ k ≤ 500. There are many different ways to maximize this expression; the following is only one of
those ways. Note that

|λn−2(k+1)|
|λn−2k|

=

(
n

k + 1

)
−
(
n

k

)
(
n

k

)
−
(

n

k − 1

)

=

n!

(n− k − 1)!(k + 1)!
− n!

(n− k)!k!
n!

(n− k)!k!
− n!

(n− k + 1)!(k − 1)!

=
(n− k + 1)(n− k)− (n− k + 1)(k + 1)

(n− k + 1)(k + 1)− (k + 1)k

=
(n− k + 1)(n− 2k − 1)

(k + 1)(n− 2k + 1)
.

Setting this ratio to be less than 1 and expanding yields

(n− k + 1)(n− 2k − 1) < (k + 1)(n− 2k + 1) =⇒ 4k2 − 4kn+ (n2 − n− 2) < 0.

Note that by the Quadratic Formula the solutions to 4k2 − 4kn+ (n2 − n− 2) = 0 are

k =
4n±

√
(4n)2 − 4(4)(n2 − n− 2)

2 · 4
=
n±
√
n+ 2

2
.

The positive root gives a value of k which is above our range, so the largest value of k for which |λn−2(k+1)| <
|λn−2k| is k = bn−

√
n+2
2 c. For n = 1000, this gives k = 484, and so |λn−2k| = |λ32| is the maximum over all

λi. The requested answer is thus 32 .


