CHMIMI 2016

Algebra Solutions Packet

1. In a race, people rode either bicycles with blue wheels or tricycles with tan wheels. Given that 15 more people
rode bicycles than tricycles and there were 15 more tan wheels than blue wheels. What is the total number
of people who rode in the race?

Proposed by Patrick Lin

Solution. Let b be the number of bicycles ridden and ¢ be the number of tricycles ridden. Then we have
b—t=15
3t —2b = 15.

Solving yields b = 60 and ¢ = 45, and thus the answer is .

2. Suppose that some real number z satisfies

log, x 4 logg « + logg, « = log,, 2 + log, 16 + log,, 128.
avb

Given that the value of log, = +log, 2 can be expressed as “2, where a and c are coprime and b is squarefree,

compute abc.
Proposed by Patrick Lin

Solution. Let log, x = k. Then simplification yields log, z + logg « + logg, & = %k Similarly, we have
log, 2 + log, 16 + log, 128 = % Setting them equal, we have k = 2v/2. Then we have k + % = 94ﬁ7 and so
the answer is .

3. Let /£ be a real number satisfying the equation (02 _ 13 Then
37

1122
(1+0?> m
146  n’

where m and n are positive coprime integers. Find m + n.

Proposed by David Altizio

Solution. Replace % with a general N. Note that the given rearranges to
(14 0)* 2/ 2 1 2
1+¢2 1y e +£+l I T N

£

Now remark that

(1+0)* (1+0)3 o (041)?
1+  (1+02—0+1) £2—(0+1
3¢ 3

=1t —.
2 —0+1 +£+%—1

Hence substituting our expression for ¢ + % yields

3 3 3(N —1) ON
+e+l—1 +4Luq + 3—N 3—N

Plugging in N = % and simplifying gives a result of }1—3, so the requested answer is 13 + 49 = .
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4. A line with negative slope passing through the point (18,8) intersects the z and y axes at (a,0) and (0,b)
respectively. What is the smallest possible value of a + b?

Proposed by David Altizio

Solution. Note that the equation of the line can be written as y — 8 = m(z — 18) for some m < 0; this
is just point-slope form. For simplicity, let mo = —m, so that mg is positive; then the equation rewrites to
y — 8 = mp(18 — x). Substituting y = 0 yields a = 18 + n%v and substituting z = 0 yields b = 8 + 18my.
Therefore

8 8
a+b=184+8+ <+18m0> =26 + — + 18my.
mo mo

This can be easily maximized by AM-GM or calculus, but instead we propose an alternate approach. Let
W% + 18mg = K for some K > 0. Then 18m(2) — Kmg + 8 = 0. We thus seek to find the maximum possible

K such that the quadratic 18t — Kt + 8 has at least one real solution. This condition is equivalent to the
discriminant being nonnegative, so we must have

K?-4-18-8>0 = K >24.

Therefore a +b > 26 + 24 = .

5. The parabolas y = 2% + 152 + 32 and o = y? + 49y + 593 are tangent to each other at some point (g, o).
Find xg + yo-

Proposed by Andrew Kwon

Solution. Adding the two equations yields z + v = 22 + 152 + y? + 49y + 625, which is equivalent to
2% + 14z + 49 + y? + 48y + 576 = 0. This factors as a sum of squares (x + 7)% + (y + 24)2 = 0, and so

x = =T,y =—24. Then, (zo,y0) = (=7,—24) and z¢ + yo = .

6. For some complex number w with |w| = 2016, there is some A > 1 such that w,w? A\w form an equilateral
a+vb

triangle in the complex plane. Then, A can be written in the form =

va+b+ec.

Proposed by Andrew Kwon

, with a, b, ¢ positive integers. Compute

Solution. In general, let |w| = n. Note that w,w?, \w form an equilateral triangle if and only if 1, \,w for
an equilateral triangle in the complex plane. This is because multiplying each number by w scales and rotates
every point in the plane by the same amount. Interpreting the complex numbers 1,w as vectors, it follows
that X exists only if the angle between 1,w is §. Also note that |w — 1] = [\ = 1| = A — 1 since A, 1 are other
vertices of the same equilateral triangle. By the Law of Cosines, we have

W =1+ Jw = 1° + |w — 1]
=1+A-1)2+(\—1),
and so A = Hvidn~=3 V‘;”L?’. It follows that a + b+ ¢ = 4n?, and so the desired answer is simply v/40322 = | 4032 |.

7. Let a, b, ¢, and d be positive real numbers which satisfy the system of equations

(a+b)(c+d) =143,
(a+c)(b+d) = 150,
(a+d)(b+c) = 169.

Find the smallest possible value of a® + b% + ¢ + d>.

Proposed by David Altizio
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Solution. Note that the equations expand to

ac + ad + bec + bd = 143,
ab + ad + bec + ed = 150,
ab+ ac + bd + cd = 169.

Adding all these equalities together yields
2(ab+ ac+ ad + be + bd + ¢d) = 143 + 150 + 169 = 462.
As a result, we have
(a+b+c+d?=a>+b*+c+d*+2(ab+ac+ ad + be + bd + cd) = a® + b* + & + d* + 462.

Hence in order to minimize a2 + b% + ¢2 + d? it suffices to minimize a + b + ¢ + d.

To do this, note that by AM-GM on the last equation we have

at+b+c+d

2
5 > = (a+b+c+d)?>4-169 = 676.

(a+d)(b+c)<<

This is in fact sufficient to guarantee the existence of a, b, ¢, d which satisfy all three equations. To see this,
let s = a+ b+ c+ d, and note that the original system can be written as

(a+0b)(s — (a+0)) =143,
(a+¢c)(s— (a+c)) =150,
(a+d)(s— (a+d)) = 169.

These are quadratics in a + b, a + ¢, and a + d respectively; as a result, whenever s > 26 the values of a + b,
a+ ¢, and a + d are all real. Adding these together allows one to solve for a, from which the values of the
other three variables follow. (A computer simulation ensures that a, b, ¢, and d are all positive.)

Hence, we have
>+ 0+ +d = (a+b+ctd)? - 462 > 676 — 462 = [214].

. Let vy, 79, ..., o9 be the roots of the polynomial 220 — 723 + 1. If
! + ! +
P+l ri+1 30 +1

can be written in the form 7* where m and n are positive coprime integers, find m + n.
Proposed by David Altizio

Solution. Note that by partial fraction decomposition

I 1 1 1 1
2+1  (re—i)(re+i) 2 \rp—i g+

for all positive integers 1 < k < 20. This in turn means that the expression we wish to evaluate can be
rewritten as

1% 1 13 1
e =t

We now present two ways to compute this sum: the first one uses standard algebraic techniques, while the
second employs a bit of calculus.
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METHOD 1: Let Q(x) be the polynomial whose roots are r1 4+ 4, 9 +1, ..., 799 + 4. Then by standard
methods
Qz)=Plx—i)=(x—i)* —7(x —1i)*+ 1.

We seek to compute the sum of the reciprocals of the roots of (). Note that the constant term of @ is
Q(0) = (—4)?° — 7(—i)® + 1 = 2 — Ti, while by the Binomial Theorem

[2]Q(z) = (210> (=)' — 7(‘2’) (—i)? = 20i + 21.

Thus by Vieta’s the sum of the reciprocals of the roots of @ is simply
—(2004+21) 98 182

9-7i 53 53

To compute the second summation, let R be the polynomial whose roots are r; — i through roo —i. A
similar argument works here as well, but in fact we can save time by noting that for all real x we have

R(z) = P(x +1i) = P(x —1) = P(x — 1) = Q(x),

and so R(x) = Q(z) identically. As a result, all the coefficients of R are conjugates of the coefficients of
@, and so the sum of the reciprocals of the roots of R is % + 1822 Hence the desired sum is

L[(98, 182y (95 182)] 182
2i [\ 53 53 53 53 - 53
and the requested answer is 182 + 53 = @
METHOD 2: Rewrite the sum as

1 1 1
Ez(fi)frk _Zk lzfrk

k=1

We now make use of the following lemma.
LEMMA: Let P be a polynomial of degree n and r1,...,r, its roots. Then for any x,

- _ P
Z x—rry Px)’

k=1

Proof. Assume WLOG that P is monic; we can do this since scaling P by a constant changes neither
the roots of P nor the ratio P'(z)/P(x) for any z. Rewrite P(z) as [[\_;(z — r;). Then remark

/ d “
P(x):dx[H Z H (x —ry).

i=1 i=11<j#i<n

This is basically a generalization of the Product Rule for derivatives. Finally, we can connect this to the
sum in question by noting that

1 o
Z — = Z H T —xj) =5 ()
im LT Y i=11<j#i<n ()

as desired. 0

With this, our summation becomes

20 20

1 Z 1 1 1 1 (P'(—-i) P'(3)
20 = (i) =7k 22 Q=T T2 P(—i) PG )’
which from our remark in Method 1 is just the imaginary part of P( . Computation yields %, giving

the same answer as before.
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9. Let |z] denote the greatest integer function and {x} = x — |x] denote the fractional part of z. Let 1 <z <
. < 100 be the 100 smallest values of z > 1 such that /[z]|23] + \/{z}{23} = 2. Compute

50
E : 22 2
1 T2k

932k 1

Proposed by Cody Johnson
Solution. By Cauchy-Schwarz,
Vi0e]a?] + ez} < V(] + {ah)([2] + {2?}) = 22
This in turn means that we actually have equality. Recall that in the two variable case of Cauchy-Schwarz,

(a® +b*)(c* + d?) > (ac + bd)?,

a

the equality case holds when ¢ = d, or ad = bc. Applying this here yields
le[{”} = |2° {=}
= |z]2? = |2*]
= 20z {a} + [2){z}? = [3[2)*{a} + 3] {2} + {z}?].
We also have |z]2? = 23| > 23 — 1,50 |2| >z —

4, ie. {z} < L. This allows us to easily bound

[3[]*{x} + 3l {z}* + {2}°] € {0,1,2,3},

which means |z]{x}(2|x] + {z}) € {0,1,2,3}. Let this expression equal r. Writing this as a quadratic in {x}
and using the Quadratic Formula yields

{z} = —l=] +

where 7 € {0,1,2,3}. Since we need this to be in the interval [0, %), we can further bound to get that these

values work precisely when r € {0,1}. Thus, the solution set is o, —1 = n, o, = y/n? + % forn=1,2,...,50.

Finally, we compute
50

1 50(51
2 (Vi +1/n)? —n? 2 n= % =125}

n=1

10. Denote by Fy(x), Fi(z), ... the sequence of Fibonacci polynomials, which satisfy the recurrence Fy(z) = 1,
Fi(z) = 2, and F,(v) = 2F,_1(x) + F,,_o(x) for all n > 2.1 Tt is given that there exist integers g, Ay, ...,

)\1000 such that
1000

1000 Z )\ F

for all real z. For which integer k is |\x| maximized?
Proposed by David Altizio
Solution. Replace 1000 with a general n. I claim that for all n > 0 we have

om0 (1) = ()] Aewto

k=1

To prove this, we use mathematical induction. The base case, n = 0, is easy. For the inductive step, assume
that the identity holds true for some value of n. We now split into cases.

n reality, the indexes are shifted up by one (so e.g. Fi(z) = 1), but this interpretation makes the problem statement easier to write
since deg Fi(z) =i for all : > 0
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e CASE 1: n is odd. Note that multiplying both sides of the equality by « and using the definition of
the Fibonacci polynomials yields

[n/2]

2" = oF(2) + Y (1) K:) - <k " ) } 2 Fy_oi(2)

_ (k " 1)} [Fri1-o0(z) — Fo1_o()]

_ > (—1)F [(Z) - (k ﬁ 1)] Fr1-ok(x).

Our end goal is to combine these two summations into one. To accomplish this, note that shifting the
indeces of the second summation up by 1 and moving the F,,_;(x) gives

[n/2]

ot = R+ 00| (3) = ()| Pt

k=1

[n/2]+1

Pt 3 0 [(1) - ()] s
= Foi(2) + Lan(—l)k’ KZ) - (k " 1)} Foi1_ok(2)

k=1
ln/2)+1

) s

Now we are able to combine the summations together. First, we deal with the case where n+1—2k # 0.
Note that in this case, it is not hard to see that the coefficient of Fj,11_ox () is

() ()l e G ) )
= ()~ )+ (G0) - ()
= () () - (G2) + ()
- () -G

The case where n+1 —2k =0 (ie. k = %) is a bit trickier. Note that the only summation that
contains an Fy(z) term is the second one. Thus, we may conclude that the coefficient of Fy(x) in the

final expansion is
(pfmeDre Km —n1>/2) - ((n —n3>/2)] |

In order for our hypothesis to be correct, it suffices to show that this equals

0 [ () = ()|

To prove this, we need to be slightly clever: since "T'H + "7_1 = n, we have ((n_"l)/Q) = ((n-ﬁ)/z)' After
this point, we can apply the same logic as we did above to reach the desired conclusion.
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We have thus shown in this case that

[(n+1)/2]

n n+1 n+1

2" =Foa@+ Y (-1 K P ) - (k: 1)} Fri1-an(z),
k=1

which is what we wanted.

CASE 2: n is even. This case is actually very similar to the previous case, so we won’t show work
here; the only difference relates to that edge case we described above. More specifically, note that we
can’t say ©F,_or(x) = Fpy1—2k(z) — Fr—1-2k(x) for k = n/2, since then the second term is F_;(z),
which is bad. Instead, we write xFy(z) = Fi(x). Details are left to the reader.

We have thus proven the hypothesis true for n + 1, and so by the Principle of Mathematical Induction we are
done.

Now we work on maximizing the \;. Note that from the above work we may extract the A\ terms to get

SRCRAD

for all 0 < k < 500. There are many different ways to maximize this expression; the following is only one of

those ways. Note that
|)‘n72(k+1)| kE+1 k

SRR

n! n!
n—k—Dk+1)!  (n—k)k!
n! n!
(n—kMk!  (n—k+1)(k—1)!
C(n—k+1)(n—k)—(n—k+1)(k+1)
(n—k+1)(k+1)— (k+ 1)k
_ (n—k+1)(n—2k—-1)
(k+1)(n—2k+1)

Setting this ratio to be less than 1 and expanding yields
n—k+1)n—-2k—1)<(k+1)(n—2k+1) = 4k* —4kn+ (n*—n—2)<0.
Note that by the Quadratic Formula the solutions to 4k — 4kn + (n? —n — 2) = 0 are

_dnd VAn)?2 —4(4)(n2—n—-2) nEvn+2

& 2.4 o 2

The positive root gives a value of k£ which is above our range, so the largest value of k for which |\, _o(x41)| <
[An—ok| is k = [ 2=5"= V2"+2J For n = 1000, this gives k = 484, and so |Ap—2r| = |A32] is the maximum over all
;. The requested answer is thus .



